共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
推荐系统作为解决信息过载的一种有效手段,已成为工业界和学术界的研究热点,它依据用户的显式或隐式反馈信息推测其需求、兴趣等,将其偏好的信息、产品等推荐给他们。面向显式反馈信息的推荐方法是目前的主流,而隐式反馈信息的普遍性使得基于此类的推荐方法具有更广的适用性,但是,隐式反馈信息并不能直接反映用户的偏好,因而利用它进行推荐具有很大的挑战。首先阐述了隐式反馈的特性以及基于此类信息进行推荐的必要性和所面临的问题;然后对面向隐式反馈的推荐算法给出了全面的、系统的分类,在此基础上比较了各类隐式反馈的推荐方法的优、缺点,并进一步分析了适用于隐式反馈推荐方法的多种评价指标;最后讨论了面向隐式反馈推荐方法的未来发展方向。 相似文献
3.
推荐的准确性(accuracy)和多样性(diversity)是推荐算法研究的二个重要指标,能够最大程度地满足用户的喜好.然而,基于准确性的推荐将导致推荐结果过于聚焦集中在某类特征上,使得多样性降低,导致用户选择的广度不足而整体效果不佳.针对推荐算法的两个指标之间的平衡以满足用户的需求,本文采用最大预测评分和最大内部相似度差异的两目标模型,选取极值点和膝点为隐式偏好,利用隐式偏好改进推荐方案搜索优化策略,提出了一种基于隐式偏好的多目标推荐算法.该算法利用切比雪夫距离在迭代过程中对偏好点动态标定,以引导个体收敛于隐式偏好区域,得到具有不同偏好的推荐方案.在Movielens和Netflix数据集上实验结果表明,与Item-based协同过滤推荐算法相比,该算法的推荐结果在确保准确率性能情况下多样性平均提升了38%和33.4%,新颖度平均提升了58.6%和125.4%,降低了多目标推荐算法的复杂度,有效解决了实际应用问题. 相似文献
4.
显式反馈与隐式反馈相结合,可以有效提升推荐性能.但是现有的融合显式反馈与隐式反馈的推荐系统存在未能发挥隐式反馈数据缺失值反映用户隐藏偏好的能力,或者未能保留显式反馈数据反映用户偏好程度的能力的局限性.为了解决这个问题,提出了一种融合显式反馈与隐式反馈的协同过滤推荐算法.该算法分为两个阶段:第1阶段利用加权低秩近似处理隐式反馈数据,训练出隐式用户/物品向量;第2阶段引入了基线评估,同时将隐式用户/物品向量作为补充,通过显隐式用户/物品向量结合,训练得出用户对物品的预测偏好程度.该算法与多个典型算法在标准数据集上进行了实验比较,其可行性和有效性得到验证. 相似文献
5.
基于大规模隐式反馈的个性化推荐 总被引:2,自引:0,他引:2
对如何利用大规模隐式反馈数据进行个性化推荐进行了研究,提出了潜在要素模型IFRM.该模型通过将推荐任务转化为选择行为发生概率的优化问题,克服了在隐式反馈推荐场景下只有正反馈而缺乏负反馈导致的困难.在此基础上,为了进一步提高效率和可扩展性,提出了并行化的隐式反馈推荐模型p-IFRM.该模型通过将用户及产品随机分桶并重构优化更新序列,达到了并行优化的目的.通过概率推导,所提出的模型有坚实的理论基础.通过在MapReduce并行计算框架下实现p-IFRM,并在大规模真实数据集上进行实验,可以证明所提出的模型能够有效提高推荐质量并且有良好的可扩展性. 相似文献
6.
传统的个性化推荐算法普遍存在数据稀疏性问题,影响了推荐的准确度。Slope one算法具有简单、高效等特点,但该算法只是根据用户—项目评分矩阵进行数据分析,对所有用户采用一致性的权重进行计算,忽视了用户对项目类型的喜好程度。针对上述问题进行了研究,提出LR-Slope one算法。首先根据用户—项目评分矩阵和项目类型信息构建用户对项目类型的偏好矩阵;然后利用线性回归模型计算用户对每个类型的权重,采用随机梯度下降算法优化权重;最后结合Slope one算法预测评分,填充评分矩阵,提高推荐的质量。实验结果表明,所提算法提高了推荐的精度,有效缓解了稀疏性问题。 相似文献
7.
针对个性化推荐系统中用户偏好信息量小的问题,提出了混合用户偏好获取,以相对准确但稀少的显式评分为基础,综合考虑用户页面停留时间、页面滚动时间和鼠标点击次数三项浏览行为,以评分转化规则为依据,得到隐式评分。结合隐式评分和显式评分,构建反映用户偏好的用户一项目矩阵,为个性化推荐算法的实施提供数据基础。实验证明,混合用户偏好获取是可行和有效的。 相似文献
8.
为解决常见的相似性方法存在未考虑用户间共同评分项在目标用户所评项目中的比例以及用户评分偏好的问题。提出了非对称因子和偏好因子,用于提高用户相似性计算的准确性。在公开的MovieLens和Yahoo Music数据集上的实验表明,引入这两个因子后,相似性模型的预测误差下降显著,优于其他相似性方法。非对称因子和偏好因子的引入更合理地体现出用户间的评分差异性,有效地处理了用户偏好问题,提高了推荐质量。 相似文献
10.
改进的矩阵分解(SVD++)将用户和物品特征向量的内积作为用户对物品的评分,而内积无法捕捉用户与物品之间复杂的高阶非线性关系.此外,SVD++在融入用户隐式反馈时,未区分不同交互物品对于用户特征表达的贡献.针对上述问题,文中提出基于深度神经网络和加权隐反馈的推荐算法(DeepNASVD++),采用深度神经网络建模用户与物品之间的关系,使用注意力机制计算历史交互物品在建模用户隐式反馈时的权重.在公开数据集上的实验验证文中算法的有效性. 相似文献
11.
在信息流消费场景中,利用用户的隐式行为反馈,对用户进行个性化内容推荐是核心问题。而由于行为惯性的问题,用户通常只是浏览feed流,互动行为数据稀疏,导致传统方法在个性化等方面性能不高。针对该问题,设计了隐式反馈的权重转化方法,提出LFM-XGB-LR融合模型,利用LFM生成嵌入向量,结合了XGB在特征交叉和LR在离散计算上的优势。实验结果表明,基于LFM的嵌入改善了模型个性化的问题,该融合模型在各项指标上均有稳定提升。 相似文献
12.
13.
传统的基于评分预测的社会化协同过滤推荐算法存在预测值与真实排序不匹配的固有缺陷,而基于排序预测的社会化协同排序推荐算法更符合真实的应用场景。然而,现有的大多数基于排序预测的社会化协同排序推荐算法要么仅仅关注显式反馈数据,要么仅仅关注隐式反馈数据,没有充分挖掘这些数据的价值。为充分挖掘用户的社交网络和推荐对象的显/隐式评分信息,同时克服基于评分预测的社会化协同过滤推荐算法存在的固有缺陷,在xCLiMF模型和TrustSVD模型基础上,提出一种新的融合显/隐式反馈的社会化协同排序推荐算法SPR_SVD++。该算法同时挖掘用户评分矩阵和社交网络矩阵中的显/隐式信息,并优化排序学习的评价指标预期倒数排名(ERR)。在真实数据集上的实验结果表明,采用归一化折损累计增益(NDCG)和ERR作为评价指标,SPR_SVD++算法均优于最新的TrustSVD、MERR_SVD++和SVD++算法。可见SPR_SVD++算法性能好、可扩展性强,在互联网信息推荐领域有很好的应用前景。 相似文献
14.
基于隐式反馈的个人信息检索技术及实现 总被引:6,自引:0,他引:6
回顾了已有的相关反馈技术,在此基础上提出了构造和调整用户兴趣模型的隐式反馈算法,给出了一个基于隐式反馈的lnfoAgent的设计实现和实验结果,实验表明隐式反馈技术对提高检索精度有很大的帮助。 相似文献
15.
16.
现有的隐式反馈协同算法直接利用稀疏的二值社交信任信息辅助推荐,存在严重的数据稀疏问题,且没有深层次地融合社交信任信息的影响。针对以上问题,提出利用降噪自编码器深度融合用户隐式反馈数据与社交信息的算法。首先从不同的角度区分用户信任,提出一种信任相似度的新度量方法来改善社交数据的稀疏性,利用降噪自编码器将信任数据与用户隐式交互信息深度融合,通过综合二者的影响,有效提高了推荐质量。实验表明,该算法优于现有主流的的隐式反馈推荐算法。 相似文献
17.
协同过滤推荐算法是目前应用最为广泛的个性化推荐方法之一,但传统的推荐算法在计算目标用户邻居集时只考虑用户项目评分矩阵中的具体数值,没有考虑用户偏好以及用户评分与项目属性之间的关系,推荐精度也有待进一步提高。针对这一问题,提出了一种基于用户偏好和项目属性的协同过滤推荐算法(UPPPCF)。本算法在传统的用户项目评分矩阵基础上综合考虑用户偏好以及项目属性,把评分矩阵转变成基于用户偏好的用户项目属性评分矩阵,然后根据这一评分矩阵来计算目标用户的最近邻居集,克服了传统相似性计算方法只依靠用户评分值的不足,同时本文对预测值判定给出了一种有效的度量方法。在 MovieLen 数据集上的实验结果表明,本文提出的UPPPCF算法能够有效弥补传统协同过滤算法中的不足,而且在推荐精度上有了明显的提高。 相似文献
18.
为了提升社交网络个性化推荐能力,结合用户行为分布进行个性化推荐设计,文中提出基于用户行为特征挖掘的个性化推荐算法,构建社交网络的用户行为信息特征挖掘模型,采用显著数据分块检测方法对社交网络用户特征的行为信息进行融合处理,提取反映用户偏好的语义信息特征量。从情感、关键词和结构等方面根据用户行为特征组,结合模糊信息感知方法进行社交网络个性化推荐过程中的信息融合处理,在关联规则约束控制下,构建社交网络用户偏好特征的混合推荐模型,实现用户偏好特征挖掘,根据语义分布和用户的行为偏好实现社交网络的个性化信息推荐。仿真结果表明,采用所提方法进行社交网络个性化推荐的特征分辨能力较好,对用户行为特征的准确识别能力较强,提高了社交网络推荐输出的准确性。 相似文献
19.
融合显式和隐式反馈已被应用于提升推荐模型的性能,但是,现有的此类推荐模型未能保留显式反馈中反映用户偏好程度的信息,且现有研究认为拥有显式反馈的数据和仅拥有隐式反馈的数据对于模型具有同等影响,未能充分发挥显式反馈的优势.针对这些问题,提出一种新的融合显式和隐式反馈的协同过滤推荐模型(CEICF).首先,所提出模型提取显式反馈中的特征得到用户/物品的全局偏好向量;然后,从隐式反馈中提取用户/物品的潜在向量,进而将两种向量进行融合得到用户/物品的偏好向量;最后,使用神经网络预测用户与物品交互的可能性.在训练模型时,定义一种加权的二进制交叉熵损失函数,加强显式反馈对模型的影响来增强模型捕获用户偏好的能力.为了验证所提出模型的有效性,在覆盖不同领域的现实数据集上进行实验,实验结果表明,CEICF可有效地融合显式和隐式反馈,且推荐效果相对于基线模型有显著提升. 相似文献
20.
传统的推荐系统是面向单个用户的推荐。作为个性化推荐的一个新的延伸,目前有越来越多的推荐系统正试图面向一组成员进行推荐。将推荐对象从单个用户扩展到一组用户的转变带来了许多新的课题,该文将主要介绍目前已有的几种组推荐算法,并总结一般组推荐系统的偏好融合过程。 相似文献