首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Precision oncology is an emerging approach in cancer care. It aims at selecting the optimal therapy for the right patient by considering each patient’s unique disease and individual health status. In the last years, it has become evident that breast cancer is an extremely heterogeneous disease, and therefore, patients need to be appropriately stratified to maximize survival and quality of life. Gene-expression tools have already positively assisted clinical decision making by estimating the risk of recurrence and the potential benefit from adjuvant chemotherapy. However, these approaches need refinement to further reduce the proportion of patients potentially exposed to unnecessary chemotherapy. Nuclear magnetic resonance (NMR) metabolomics has demonstrated to be an optimal approach for cancer research and has provided significant results in BC, in particular for prognostic and stratification purposes. In this review, we give an update on the status of NMR-based metabolomic studies for the biochemical characterization and stratification of breast cancer patients using different biospecimens (breast tissue, blood serum/plasma, and urine).  相似文献   

3.
Breast cancer is the second leading cause of morbidity and mortality in women worldwide. Despite advancements in the clinical application of neoadjuvant chemotherapy (NAC), drug resistance remains a major concern hindering treatment efficacy. Thus, identifying the key genes involved in driving NAC resistance and targeting them with known potential FDA-approved drugs could be applied to advance the precision medicine strategy. With this aim, we performed an integrative bioinformatics study to identify the key genes associated with NAC resistance in breast cancer and then performed the drug repurposing to identify the potential drugs which could use in combination with NAC to overcome drug resistance. In this study, we used publicly available RNA-seq datasets from the samples of breast cancer patients sensitive and resistant to chemotherapy and identified a total of 1446 differentially expressed genes in NAC-resistant breast cancer patients. Next, we performed gene co-expression network analysis to identify significantly co-expressed gene modules, followed by MCC (Multiple Correlation Clustering) clustering algorithms and identified 33 key hub genes associated with NAC resistance. mRNA–miRNA network analysis highlighted the potential impact of these hub genes in altering the regulatory network in NAC-resistance breast cancer cells. Further, several hub genes were found to be significantly involved in the poor overall survival of breast cancer patients. Finally, we identified FDA-approved drugs which could be useful for potential drug repurposing against those hub genes. Altogether, our findings provide new insight into the molecular mechanisms of NAC resistance and pave the way for drug repurposing techniques and personalized treatment to overcome NAC resistance in breast cancer.  相似文献   

4.
Recent advances in our understanding of breast cancer have demonstrated that cancer stem-like cells (CSCs, also known as tumor-initiating cell (TICs)) are central for progression and recurrence. CSCs are a small subpopulation of cells present in breast tumors that contribute to growth, metastasis, therapy resistance, and recurrence, leading to poor clinical outcome. Data have shown that cancer cells can gain characteristics of CSCs, or stemness, through alterations in key signaling pathways. The dysregulation of miRNA expression and signaling have been well-documented in cancer, and recent studies have shown that miRNAs are associated with breast cancer initiation, progression, and recurrence through regulating CSC characteristics. More specifically, miRNAs directly target central signaling nodes within pathways that can drive the formation, maintenance, and even inhibition of the CSC population. This review aims to summarize these research findings specifically in the context of breast cancer. This review also discusses miRNAs as biomarkers and promising clinical therapeutics, and presents a comprehensive summary of currently validated targets involved in CSC-specific signaling pathways in breast cancer.  相似文献   

5.
MicroRNAs, which are small endogenous RNA regulators, have been associated with various types of cancer. Breast cancer is a major health threat for women worldwide. Many miRNAs were reported to be associated with the progression and carcinogenesis of breast cancer. In this study, we aimed to discover novel breast cancer-related miRNAs and to elucidate their functions. First, we identified confident miRNA-target pairs by combining data from miRNA target prediction databases and expression profiles of miRNA and mRNA. Then, miRNA-regulated protein interaction networks (PINs) were constructed with confident pairs and known interaction data in the human protein reference database (HPRD). Finally, the functions of miRNA-regulated PINs were elucidated by functional enrichment analysis. From the results, we identified some previously reported breast cancer-related miRNAs and functions of the PINs, e.g., miR-125b, miR-125a, miR-21, and miR-497. Some novel miRNAs without known association to breast cancer were also found, and the putative functions of their PINs were also elucidated. These include miR-139 and miR-383. Furthermore, we validated our results by receiver operating characteristic (ROC) curve analysis using our miRNA expression profile data, gene expression-based outcome for breast cancer online (GOBO) survival analysis, and a literature search. Our results may provide new insights for research in breast cancer-associated miRNAs.  相似文献   

6.
Neoadjuvant chemotherapy (NAC) is commonly used in breast cancer (BC) patients to increase eligibility for breast-conserving surgery. Only 30% of patients with BC show pathologic complete response (pCR) after NAC, and residual disease (RD) is associated with poor long-term prognosis. A critical barrier to improving NAC outcomes in patients with BC is the limited understanding of the mechanisms underlying differential treatment outcomes. In this study, we evaluated the ability of exosomal metabolic profiles to predict NAC response in patients with BC. Exosomes isolated from the plasma of patients after NAC were used for metabolomic analyses to identify exosomal metabolic signatures associated with the NAC response. Among the 16 BC patients who received NAC, eight had a pCR, and eight had RD. Patients with RD had 2.52-fold higher exosome concentration in their plasma than those with pCR and showed significant enrichment of various metabolic pathways, including citrate cycle, urea cycle, porphyrin metabolism, glycolysis, and gluconeogenesis. Additionally, the relative exosomal levels of succinate and lactate were significantly higher in patients with RD than in those with pCR. These data suggest that plasma exosomal metabolic signatures could be associated with differential NAC outcomes in BC patients and provide insight into the metabolic determinants of NAC response in patients with BC.  相似文献   

7.
8.
Heterogeneity of triple-negative breast cancer is well known at clinical, histopathological, and molecular levels. Genomic instability and greater mutation rates, which may result in the creation of neoantigens and enhanced immunogenicity, are additional characteristics of this breast cancer type. Clinical outcome is poor due to early age of onset, high metastatic potential, and increased likelihood of distant recurrence. Consequently, efforts to elucidate molecular mechanisms of breast cancer development, progression, and metastatic spread have been initiated to improve treatment options and improve outcomes for these patients. The extremely complex and heterogeneous tumor immune microenvironment is made up of several cell types and commonly possesses disorganized gene expression. Altered signaling pathways are mainly associated with mutated genes including p53, PIK3CA, and MAPK, and which are positively correlated with genes regulating immune response. Of note, particular immunity-associated genes could be used in prognostic indexes to assess the most effective management. Recent findings highlight the fact that long non-coding RNAs also play an important role in shaping tumor microenvironment formation, and can mediate tumor immune evasion. Identification of molecular signatures, through the use of multi-omics approaches, and effector pathways that drive early stages of the carcinogenic process are important steps in developing new strategies for targeted cancer treatment and prevention. Advances in immunotherapy by remodeling the host immune system to eradicate tumor cells have great promise to lead to novel therapeutic strategies. Current research is focused on combining immune checkpoint inhibition with chemotherapy, PARP inhibitors, cancer vaccines, or natural killer cell therapy. Targeted therapies may improve therapeutic response, eliminate therapeutic resistance, and improve overall patient survival. In the future, these evolving advancements should be implemented for personalized medicine and state-of-art management of cancer patients.  相似文献   

9.
Phagocytosis is crucial in tumor surveillance and immune function. The association between phagocytosis and the outcomes of breast cancer patients has not been well-determined. In this study, data were downloaded from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) databases to investigate the role of phagocytosis in breast cancer. Data from the TCGA and GEO databases were used to investigate the prognostic role of phagocytosis in breast cancer. Then, we performed pathway enrichment analysis, copy number variation (CNV) and single-nucleotide variant (SNV) analyses, immune infiltration analysis, calculation of tumor purity, stromal score, and immune score, and consistent clustering. We also constructed a phagocytosis-regulators-based signature system to examine its association in survival and drug response. The genomic and expression differences in the phagocytosis regulators in breast cancer were systematically analyzed, explaining the widespread dysregulation of phagocytosis regulators. Using the investigated association of phagocytosis regulators with the prognosis and tumor immune environment, we constructed a prognostic model based on phagocytosis regulators. We discovered that patients with high risk scores had a poor prognosis and were negatively associated with immune functions. The model had preferential predictive performance and significantly consistent drug-resistance prediction results. Our findings suggest that the phagocytosis-factors-based scoring system can be used as a novel prognostic factor, serving as a powerful reference tool for predicting prognosis and developing methods against drug resistance.  相似文献   

10.
Breast cancer is the most common type of cancer in women, with chemotherapy being the main strategy. However, its effectiveness is reduced by drug resistance mechanisms. miR-21 is upregulated in breast cancer that has been linked to drug resistance and carcinogenic processes. Our aim was to capture miR-21 with a circular sponge (Circ-21) and thus inhibit the carcinogenic processes and drug resistance mechanisms in which it participates. Proliferation, migration, colony formation, cell cycle, and poly [ADP-ribose] polymerase 1 (PARP-1) and vascular endothelial growth factor (VEGF) detection assays were performed with MCF7 breast cancer cells and MCF10A non-tumor cells. In addition, doxorubicin resistance tests and detection of drug resistance gene expression were performed in MCF7 cells. Reduction in proliferation, as well as migration and colony formation, increased PARP-1 expression, inhibition of VEGF expression and cell cycle arrest in G2/M phase were displayed in the Circ-21 MCF7, which were not observed in the MCF10A cells. Furthermore, in the MCF7 cells, the Circ-21 enhanced the antitumor activity of doxorubicin and decreased the expression of resistance genes: ABCA1, ABCC4, and ABCC5. Based on these results, the use of Circ-21 can be considered a first step for the establishment of an effective gene therapy in the treatment of breast cancer.  相似文献   

11.
Breast cancer is a common and deadly disease that causes tremendous physical, emotional, and financial burden on patients and society. Early-stage breast cancer and less aggressive subtypes have promising prognosis for patients, but in aggressive subtypes, and as cancers progress, treatment options and responses diminish, dramatically decreasing survival. Plants are nutritionally rich and biologically diverse organisms containing thousands of metabolites, some of which have chemopreventive, therapeutic, and sensitizing properties, providing a rich source for drug discovery. In this study we review the current landscape of breast cancer with a central focus on the potential role of phytochemicals for treatment, management, and disease prevention. We discuss the relevance of phytochemical targeting of mitochondria for improved anti-breast cancer efficacy. We highlight current applications of phytochemicals and derivative structures that display anti-cancer properties and modulate cancer mitochondria, while describing future applicability and identifying areas of promise.  相似文献   

12.
Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd), which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU) is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd.  相似文献   

13.
ACBD3 overexpression has previously been found to correlate with worse prognosis for breast cancer patients and, as an incredibly diverse protein in both function and cellular localisation, ACBD3 may have a larger role in breast cancer than previously thought. This study further investigated ACBD3′s role in breast cancer. Bioinformatic databases were queried to characterise ACBD3 expression and mutation in breast cancer and to investigate how overexpression affects breast cancer patient outcomes. Immunohistochemistry was carried out to examine ACBD3 location within cells and tissue structures. ACBD3 was more highly expressed in breast cancer than in any other cancer or matched normal tissue, and expression over the median level resulted in reduced relapse-free, overall, and distant metastasis-free survival for breast cancer patients as a whole, with some differences observed between subtypes. IHC analysis found that ACBD3 levels varied based on hormone receptor status, indicating that ACBD3 could be a candidate biomarker for poor patient prognosis in breast cancer and may possibly be a biomarker for ER signal reprogramming of precancerous breast tissue.  相似文献   

14.
Triple Negative Breast Cancer (TNBC) is a very aggressive tumor subtype, which still lacks specific markers for an effective targeted therapy. Despite the common feature of negativity for the three most relevant receptors (ER, PgR and HER2), TNBC is a very heterogeneous disease where different subgroups can be recognized, and both gene and microRNA profiling studies have recently been carried out to dissect the different molecular entities. Moreover, several microRNAs playing a crucial role in triple negative breast cancer biology have been identified, providing the experimental basis for a possible therapeutic application. Indeed, the causal involvement of microRNAs in breast cancer and the possible use of these small noncoding RNA molecules as biomarkers has been extensively studied with promising results. Their application as therapeutic tools might represent an innovative approach, especially for a tumor subgroup still lacking an efficient and specific therapy such as TNBC. In this review, we summarize our knowledge on the most important microRNAs described in TNBC.  相似文献   

15.
Connexins (Cxs) are a family of proteins that form two different types of ion channels: hemichannels and gap junction channels. These channels participate in cellular communication, enabling them to share information and act as a synchronized syncytium. This cellular communication has been considered a strong tumor suppressor, but it is now recognized that some type of Cxs can be pro-tumorigenic. For example, Cx46 expression is increased in human breast cancer samples and correlates with cancer stem cell (CSC) characteristics in human glioma. Thus, we explored whether Cx46 and glioma cells, can set up CSC and epithelial-to-mesenchymal transition (EMT) properties in a breast cancer cell line. To this end, we transfected MCF-7 cells with Cx46 attached to a green fluorescent protein (Cx46GFP), and we determined how its expression orchestrates both the gene-expression and functional changes associated with CSC and EMT. We observed that Cx46GFP increased Sox2, Nanog, and OCT4 mRNA levels associated with a high capacity to form monoclonal colonies and tumorspheres. Similarly, Cx46GFP increased the mRNA levels of n-cadherin, Vimentin, Snail and Zeb1 to a higher migratory and invasive capacity. Furthermore, Cx46GFP transfected in MCF-7 cells induced the release of higher amounts of VEGF, which promoted angiogenesis in HUVEC cells. We demonstrated for the first time that Cx46 modulates CSC and EMT properties in breast cancer cells and thus could be relevant in the design of future cancer therapies.  相似文献   

16.
Detecting breast cancer (BC) at the initial stages of progression has always been regarded as a lifesaving intervention. With modern technology, extensive studies have unraveled the complexity of BC, but the current standard practice of early breast cancer screening and clinical management of cancer progression is still heavily dependent on tissue biopsies, which are invasive and limited in capturing definitive cancer signatures for more comprehensive applications to improve outcomes in BC care and treatments. In recent years, reviews and studies have shown that liquid biopsies in the form of blood, containing free circulating and exosomal microRNAs (miRNAs), have become increasingly evident as a potential minimally invasive alternative to tissue biopsy or as a complement to biomarkers in assessing and classifying BC. As such, in this review, the potential of miRNAs as the key BC signatures in liquid biopsy are addressed, including the role of artificial intelligence (AI) and machine learning platforms (ML), in capitalizing on the big data of miRNA for a more comprehensive assessment of the cancer, leading to practical clinical utility in BC management.  相似文献   

17.
Irisin is a myokine formed from fibronectin type III domain-containing protein 5 (FNDC5), which can be found in various cancer tissues. FNDC5 and irisin levels have been poorly studied in the tumor tissues of breast cancer (BC). The aim of this study was to determine the levels of irisin expression in BC tissues and compare them to clinicopathological factors and Ki-67 and PGC-1α expression levels. Tissue microarrays (TMAs) with 541 BC tissues and 61 samples of non-malignant breast disease (NMBD; control) were used to perform immunohistochemical reactions. FNDC5 gene expression was measured in 40 BC tissue samples, 40 samples from the cancer margin, and 16 NMBD samples. RT-PCR was performed for the detection of FNDC5 gene expression. Higher irisin expression was found in BC patients compared to normal breast tissue. FNDC5/irisin expression was higher in patients without lymph node metastases. Longer overall survival was observed in patients with higher irisin expression levels. FNDC5/irisin expression was increased in BC tissues and its high level was a good prognostic factor for survival in BC patients.  相似文献   

18.
Breast cancer seriously endangers women’s health worldwide. Protein arginine methyltransferase 5 (PRMT5) is highly expressed in breast cancer and represents a potential druggable target for breast cancer treatment. However, because the currently available clinical PRMT5 inhibitors are relatively limited, there is an urgent need to develop new PRMT5 inhibitors. Our team previously found that the FDA-approved drug tadalafil can act as a PRMT5 inhibitor and enhance the sensitivity of breast cancer patients to doxorubicin treatment. To further improve the binding specificity of tadalafil to PRMT5, we chemically modified tadalafil, and designed three compounds, A, B, and C, based on the PRMT5 protein structure. These three compounds could bind to PRMT5 through different binding modes and inhibit histone arginine methylation. They arrested the proliferation and triggered the apoptosis of breast cancer cells in vitro and also promoted the antitumor effects of the chemotherapy drugs cisplatin, doxorubicin, and olaparib in combination regimens. Among them, compound A possessed the highest potency. Finally, the anti-breast cancer effects of PRMT5 inhibitor A and its ability to enhance chemosensitivity were further verified in a xenograft mouse model. These results indicate that the new PRMT5 inhibitors A, B, and C may be potential candidates for breast cancer treatment.  相似文献   

19.
To evaluate the prognostic value of OCT4 expression and vasculogenic mimicry (VM) in human breast cancer, we examined OCT4 expression and VM formation using immunohistochemistry and CD31/PAS (periodic acid-schiff) double staining on 90 breast cancer specimens. All patients were followed up for five–149 months following surgery. Survival curves were generated using Kaplan-Meier method. Multivariate analysis was performed using Cox regression model to assess the prognostic values. Results showed positive correlation between OCT4 expression and VM formation (p < 0.05). Both OCT4 expression and VM were also positively correlated with lymph node metastasis, higher histological grade, and Nottingham prognostic index (p < 0.05). Patients with OCT4 expression or VM formation exhibited poorer overall survival (OS) and disease-free survival (DFS) than OCT4-negative or VM-negative patients (p < 0.05). OCT4-positive/VM-positive patients also had the worst OS and DFS (p < 0.05). In multivariate survival analysis, VM, Nottingham prognostic index (NPI), and Her2 were independent prognostic factors related to OS and OCT4-positive/VM-positive patients, whereas NPI and Her2 were independent predictors of DFS. These results suggest that a combined OCT4 expression/VM could improve the prognostic judgment for breast cancer patients.  相似文献   

20.
Immunotherapy is a highly emerging form of breast cancer therapy that enables clinicians to target cancers with specific receptor expression profiles. Two popular immunotherapeutic approaches involve chimeric antigen receptor-T cells (CAR-T) and bispecific antibodies (BsAb). Briefly mentioned in this review as well is the mRNA vaccine technology recently popularized by the COVID-19 vaccine. These forms of immunotherapy can highly select for the tumor target of interest to generate specific tumor lysis. Along with improvements in CAR-T, bispecific antibody engineering, and therapeutic administration, much research has been done on novel molecular targets that can especially be useful for triple-negative breast cancer (TNBC) immunotherapy. Combining emerging immunotherapeutics with tumor marker discovery sets the stage for highly targeted immunotherapy to be the future of cancer treatments. This review highlights the principles of CAR-T and BsAb therapy, improvements in CAR and BsAb engineering, and recently identified human breast cancer markers in the context of in vitro or in vivo CAR-T or BsAb treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号