共查询到20条相似文献,搜索用时 15 毫秒
1.
Hsin-Hua Li Fung-Jou Lu Hui-Chih Hung Guang-Yaw Liu Te-Jen Lai Chih-Li Lin 《International journal of molecular sciences》2015,16(5):10426-10442
Humic acid (HA) is a possible etiological factor associated with for several vascular diseases. It is known that vascular risk factors can directly increase the susceptibility to Alzheimer’s disease (AD), which is a neurodegenerative disorder due to accumulation of amyloid β (Aβ) peptide in the brain. However, the role that HA contributes to Aβ-induced cytotoxicity has not been demonstrated. In the present study, we demonstrate that HA exhibits a synergistic effect enhancing Aβ-induced cytotoxicity in cultured human SK-N-MC neuronal cells. Furthermore, this deterioration was mediated through the activation of endoplasmic reticulum (ER) stress by stimulating PERK and eIF2α phosphorylation. We also observed HA and Aβ-induced cytotoxicity is associated with mitochondrial dysfunction caused by down-regulation of the Sirt1/PGC1α pathway, while in contrast, treating the cells with the ER stress inhibitor Salubrinal, or over-expression of Sirt1 significantly reduced loss of cell viability by HA and Aβ. Our findings suggest a new mechanism by which HA can deteriorate Aβ-induced cytotoxicity through modulation of ER stress, which may provide significant insights into the pathogenesis of AD co-occurring with vascular injury. 相似文献
2.
Schizophrenia is a very complex syndrome involving widespread brain multi-dysconnectivity. Schizophrenia is marked by cognitive, behavioral, and emotional dysregulations. Recent studies suggest that inflammation in the central nervous system (CNS) and immune dysfunction could have a role in the pathogenesis of schizophrenia. This hypothesis is supported by immunogenetic evidence, and a higher incidence rate of autoimmune diseases in patients with schizophrenia. The dysregulation of the WNT/β-catenin pathway is associated with the involvement of neuroinflammation in schizophrenia. Several studies have shown that there is a vicious and positive interplay operating between neuroinflammation and oxidative stress. This interplay is modulated by WNT/β-catenin, which interacts with the NF-kB pathway; inflammatory factors (including IL-6, IL-8, TNF-α); factors of oxidative stress such as glutamate; and dopamine. Neuroinflammation is associated with increased levels of PPARγ. In schizophrenia, the expression of PPAR-γ is increased, whereas the WNT/β-catenin pathway and PPARα are downregulated. This suggests that a metabolic-inflammatory imbalance occurs in this disorder. Thus, this research’s triptych could be a novel therapeutic approach to counteract both neuroinflammation and oxidative stress in schizophrenia. 相似文献
3.
Mounia Tahri-Joutey Pierre Andreoletti Sailesh Surapureddi Boubker Nasser Mustapha Cherkaoui-Malki Norbert Latruffe 《International journal of molecular sciences》2021,22(16)
In mammalian cells, two cellular organelles, mitochondria and peroxisomes, share the ability to degrade fatty acid chains. Although each organelle harbors its own fatty acid β-oxidation pathway, a distinct mitochondrial system feeds the oxidative phosphorylation pathway for ATP synthesis. At the same time, the peroxisomal β-oxidation pathway participates in cellular thermogenesis. A scientific milestone in 1965 helped discover the hepatomegaly effect in rat liver by clofibrate, subsequently identified as a peroxisome proliferator in rodents and an activator of the peroxisomal fatty acid β-oxidation pathway. These peroxisome proliferators were later identified as activating ligands of Peroxisome Proliferator-Activated Receptor α (PPARα), cloned in 1990. The ligand-activated heterodimer PPARα/RXRα recognizes a DNA sequence, called PPRE (Peroxisome Proliferator Response Element), corresponding to two half-consensus hexanucleotide motifs, AGGTCA, separated by one nucleotide. Accordingly, the assembled complex containing PPRE/PPARα/RXRα/ligands/Coregulators controls the expression of the genes involved in liver peroxisomal fatty acid β-oxidation. This review mobilizes a considerable number of findings that discuss miscellaneous axes, covering the detailed expression pattern of PPARα in species and tissues, the lessons from several PPARα KO mouse models and the modulation of PPARα function by dietary micronutrients. 相似文献
4.
Lorena Mazuecos Cristina Pintado Blanca Rubio Eduardo Guisantes-Batn Antonio Andrs Nilda Gallardo 《International journal of molecular sciences》2021,22(9)
The altered function of adipose tissue can result in obesity, insulin resistance, and its metabolic complications. Leptin, acting on the central nervous system, modifies the composition and function of adipose tissue. To date, the molecular changes that occur in epididymal white adipose tissue (eWAT) during chronic leptin treatment are not fully understood. Herein we aimed to address whether PPARβ/δ could mediate the metabolic actions induced by leptin in eWAT. To this end, male 3-month-old Wistar rats, infused intracerebroventricularly (icv) with leptin (0.2 μg/day) for 7 days, were daily co-treated intraperitoneally (ip) without or with the specific PPARβ/δ receptor antagonist GSK0660 (1 mg/kg/day). In parallel, we also administered GSK0660 to control rats fed ad libitum without leptin infusion. Leptin, acting at central level, prevented the starvation-induced increase in circulating levels of FGF21, while induced markedly the endogenous expression of FGF21 and browning markers of eWAT. Interestingly, GSK0660 abolished the anorectic effects induced by icv leptin leading to increased visceral fat mass and reduced browning capacity. In addition, the pharmacological inhibition of PPARβ/δ alters the immunomodulatory actions of central leptin on eWAT. In summary, our results demonstrate that PPARβ/δ is involved in the up-regulation of FGF21 expression induced by leptin in visceral adipose tissue. 相似文献
5.
6.
Lo Victor G. Castro Cassiano F. Gonalves-de-Albuquerque Adriana R. Silva 《International journal of molecular sciences》2022,23(9)
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, leaving the inflammation process without a proper resolution, leading to tissue damage and possibly sequelae. The central nervous system (CNS) is one of the first regions affected by the peripheral inflammation caused by sepsis, exposing the neurons to an environment of oxidative stress, triggering neuronal dysfunction and apoptosis. Sepsis-associated encephalopathy (SAE) is the most frequent sepsis-associated organ dysfunction, with symptoms such as deliriums, seizures, and coma, linked to increased mortality, morbidity, and cognitive disability. However, the current therapy does not avoid those patients’ symptoms, evidencing the search for a more optimal approach. Herein we focus on microglia as a prominent therapeutic target due to its multiple functions maintaining CNS homeostasis and its polarizing capabilities, stimulating and resolving neuroinflammation depending on the stimuli. Microglia polarization is a target of multiple studies involving nerve cell preservation in diseases caused or aggravated by neuroinflammation, but in sepsis, its therapeutic potential is overlooked. We highlight the peroxisome proliferator-activated receptor gamma (PPARγ) neuroprotective properties, its role in microglia polarization and inflammation resolution, and the interaction with nuclear factor-κB (NF-κB) and mitogen-activated kinases (MAPK), making PPARγ a molecular target for sepsis-related studies to come. 相似文献
7.
Chingju Lin Hsiao-Yun Lin Jia-Hong Chen Wen-Pei Tseng Pei-Ying Ko Yu-Shu Liu Wei-Lan Yeh Dah-Yuu Lu 《International journal of molecular sciences》2015,16(4):8844-8860
Increasing studies suggest that inflammatory processes in the central nervous system mediated by microglial activation plays an important role in numerous neurodegenerative diseases. Development of planning for microglial suppression is considered a key strategy in the search for neuroprotection. Paeonol is a major phenolic component of Moutan Cortex, widely used as a nutrient supplement in Chinese medicine. In this study, we investigated the effects of paeonol on microglial cells stimulated by inflammagens. Paeonol significantly inhibited the release of nitric oxide (NO) and the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Treatment with paeonol also reduced reactive oxygen species (ROS) production and inhibited an ATP-induced increased cell migratory activity. Furthermore, the inhibitory effects of neuroinflammation by paeonol were found to be regulated by phosphorylated adenosine monophosphate-activated protein kinase-α (AMPK-α) and glycogen synthase kinase 3 α/β (GSK 3α/β). Treatment with AMPK or GSK3 inhibitors reverse the inhibitory effect of neuroinflammation by paeonol in microglial cells. Furthermore, paeonol treatment also showed significant improvement in the rotarod performance and microglial activation in the mouse model as well. The present study is the first to report a novel inhibitory role of paeonol on neuroinflammation, and presents a new candidate agent for the development of therapies for inflammation-related neurodegenerative diseases. 相似文献
8.
Ioanna Papatheodorou Eleftheria Galatou Georgios-Dimitrios Panagiotidis Ta Ravingerov Antigone Lazou 《International journal of molecular sciences》2021,22(12)
Accumulating evidence support the cardioprotective properties of the nuclear receptor peroxisome proliferator activated receptor β/δ (PPARβ/δ); however, the underlying mechanisms are not yet fully elucidated. The aim of the study was to further investigate the mechanisms underlying PPARβ/δ-mediated cardioprotection in the setting of myocardial ischemia/reperfusion (I/R). For this purpose, rats were treated with PPARβ/δ agonist GW0742 and/or antagonist GSK0660 in vivo and hearts were subjected to ex vivo global ischemia followed by reperfusion. PPARβ/δ activation improved left ventricular developed pressure recovery, reduced infarct size (IS) and incidence of reperfusion-induced ventricular arrhythmias while it also up-regulated superoxide dismutase 2, catalase and uncoupling protein 3 resulting in attenuation of oxidative stress as evidenced by the reduction in 4-hydroxy-2-nonenal protein adducts and protein carbonyl formation. PPARβ/δ activation also increased both mRNA expression and enzymatic activity of aldehyde dehydrogenase 2 (ALDH2); inhibition of ALDH2 abrogated the IS limiting effect of PPARβ/δ activation. Furthermore, upregulation of PGC-1α and isocitrate dehydrogenase 2 mRNA expression, increased citrate synthase activity as well as mitochondrial ATP content indicated improvement in mitochondrial content and energy production. These data provide new mechanistic insight into the cardioprotective properties of PPARβ/δ in I/R pointing to ALDH2 as a direct downstream target and suggesting that PPARβ/δ activation alleviates myocardial I/R injury through coordinated stimulation of the antioxidant defense of the heart and preservation of mitochondrial function. 相似文献
9.
Vitiligo is a common chronic dermatological abnormality that afflicts tens of millions of people. Furocoumarins isolated from Uygur traditional medicinal material Psoralen corylifolia L. have been proven to be highly effective for the treatment of vitiligo. Although many furocoumarin derivatives with anti-vitiligo activity have been synthesized, their targets with respect to the disease are still ambiguous. Fortunately, the JAKs were identified as potential targets for the disease and its inhibitors have been proved to be effective in the treatment of vitiligo in many clinical trials. Thus, sixty-five benzene sulfonate and benzoate derivatives of furocoumarins (7a–7ad, 8a–8ag) with superior anti-vitiligo activity targeting JAKs were designed and synthesized based on preliminary research. The SAR was characterized after the anti-vitiligo-activity evaluation in B16 cells. Twenty-two derivatives showed more potent effects on melanin synthesis in B16 cells than the positive control (8-MOP). Among them, compounds 7y and 8 not only could increase melanin content, but they also improved the catecholase activity of tyrosinase in a concentration-dependent manner. The docking studies indicated that they were able to interact with amino acid residues in JAK1 and JAK2 via hydrogen bonds. Furthermore, candidate 8 showed a moderate inhibition of CXCL−10, which plays an important role in JAK–STAT signaling. The RT-PCR and Western blotting analyses illustrated that compounds 7y and 8 promoted melanogenesis by activating the p38 MAPK and Akt/GSK-3β/β-catenin pathways, as well as increasing the expressions of the MITF and tyrosinase-family genes. Finally, furocoumarin derivative 8 was recognized as a promising candidate for the fight against the disease and worthy of further research in vivo. 相似文献
10.
Noelia Perez Diaz Lisa A. Lione Victoria Hutter Louise S. Mackenzie 《International journal of molecular sciences》2021,22(6)
Peroxisome proliferator activated receptor beta/delta (PPARβ/δ) is a nuclear receptor ubiquitously expressed in cells, whose signaling controls inflammation. There are large discrepancies in understanding the complex role of PPARβ/δ in disease, having both anti- and pro-effects on inflammation. After ligand activation, PPARβ/δ regulates genes by two different mechanisms; induction and transrepression, the effects of which are difficult to differentiate directly. We studied the PPARβ/δ-regulation of lipopolysaccharide (LPS) induced inflammation (indicated by release of nitrite and IL-6) of rat pulmonary artery, using different combinations of agonists (GW0742 or L−165402) and antagonists (GSK3787 or GSK0660). LPS induced release of NO and IL-6 is not significantly reduced by incubation with PPARβ/δ ligands (either agonist or antagonist), however, co-incubation with an agonist and antagonist significantly reduces LPS-induced nitrite production and Nos2 mRNA expression. In contrast, incubation with LPS and PPARβ/δ agonists leads to a significant increase in Pdk−4 and Angptl−4 mRNA expression, which is significantly decreased in the presence of PPARβ/δ antagonists. Docking using computational chemistry methods indicates that PPARβ/δ agonists form polar bonds with His287, His413 and Tyr437, while antagonists are more promiscuous about which amino acids they bind to, although they are very prone to bind Thr252 and Asn307. Dual binding in the PPARβ/δ binding pocket indicates the ligands retain similar binding energies, which suggests that co-incubation with both agonist and antagonist does not prevent the specific binding of each other to the large PPARβ/δ binding pocket. To our knowledge, this is the first time that the possibility of binding two ligands simultaneously into the PPARβ/δ binding pocket has been explored. Agonist binding followed by antagonist simultaneously switches the PPARβ/δ mode of action from induction to transrepression, which is linked with an increase in Nos2 mRNA expression and nitrite production. 相似文献
11.
David Aguilar-Recarte Xavier Palomer Walter Wahli Manuel Vzquez-Carrera 《International journal of molecular sciences》2021,22(16)
The current treatment options for type 2 diabetes mellitus do not adequately control the disease in many patients. Consequently, there is a need for new drugs to prevent and treat type 2 diabetes mellitus. Among the new potential pharmacological strategies, activators of peroxisome proliferator-activated receptor (PPAR)β/δ show promise. Remarkably, most of the antidiabetic effects of PPARβ/δ agonists involve AMP-activated protein kinase (AMPK) activation. This review summarizes the recent mechanistic insights into the antidiabetic effects of the PPARβ/δ-AMPK pathway, including the upregulation of glucose uptake, muscle remodeling, enhanced fatty acid oxidation, and autophagy, as well as the inhibition of endoplasmic reticulum stress and inflammation. A better understanding of the mechanisms underlying the effects resulting from the PPARβ/δ-AMPK pathway may provide the basis for the development of new therapies in the prevention and treatment of insulin resistance and type 2 diabetes mellitus. 相似文献
12.
Lin Zhang Hongyu Yan Yifan Tai Yueming Xue Yongzhen Wei Kai Wang Qiang Zhao Shufang Wang Deling Kong Adam C. Midgley 《International journal of molecular sciences》2021,22(4)
Fibrosis is characterized by excessive production of disorganized collagen- and fibronectin-rich extracellular matrices (ECMs) and is driven by the persistence of myofibroblasts within tissues. A key protein contributing to myofibroblast differentiation is extra domain A fibronectin (EDA-FN). We sought to target and interfere with interactions between EDA-FN and its integrin receptors to effectively inhibit profibrotic activity and myofibroblast formation. Molecular docking was used to assist in the design of a blocking polypeptide (antifibrotic 38-amino-acid polypeptide, AF38Pep) for specific inhibition of EDA-FN associations with the fibroblast-expressed integrins α4β1 and α4β7. Blocking peptides were designed and evaluated in silico before synthesis, confirmation of binding specificity, and evaluation in vitro. We identified the high-affinity EDA-FN C-C′ loop binding cleft within integrins α4β1 and α4β7. The polypeptide with the highest predicted binding affinity, AF38Pep, was synthesized and could achieve specific binding to myofibroblast fibronectin-rich ECM and EDA-FN C-C′ loop peptides. AF38Pep demonstrated potent myofibroblast inhibitory activity at 10 µg/mL and was not cytotoxic. Treatment with AF38Pep prevented integrin α4β1-mediated focal adhesion kinase (FAK) activation and early signaling through extracellular-signal-regulated kinases 1 and 2 (ERK1/2), attenuated the expression of pro-matrix metalloproteinase 9 (MMP9) and pro-MMP2, and inhibited collagen synthesis and deposition. Immunocytochemistry staining revealed an inhibition of α-smooth muscle actin (α-SMA) incorporation into actin stress fibers and attenuated cell contraction. Increases in the expression of mRNA associated with fibrosis and downstream from integrin signaling were inhibited by treatment with AF38Pep. Our study suggested that AF38Pep could successfully interfere with EDA-FN C-C′ loop-specific integrin interactions and could act as an effective inhibitor of fibroblast of myofibroblast differentiation. 相似文献
13.
Catarina Caseiro Joana Nunes Ribeiro Dias Carlos Mendes Godinho de Andrade Fontes Pedro Bule 《International journal of molecular sciences》2022,23(6)
β-glucans are a diverse group of polysaccharides composed of β-1,3 or β-(1,3-1,4) linked glucose monomers. They are mainly synthesized by fungi, plants, seaweed and bacteria, where they carry out structural, protective and energy storage roles. Because of their unique physicochemical properties, they have important applications in several industrial, biomedical and biotechnological processes. β-glucans are also major bioactive molecules with marked immunomodulatory and metabolic properties. As such, they have been the focus of many studies attesting to their ability to, among other roles, fight cancer, reduce the risk of cardiovascular diseases and control diabetes. The physicochemical and functional profiles of β-glucans are deeply influenced by their molecular structure. This structure governs β-glucan interaction with multiple β-glucan binding proteins, triggering myriad biological responses. It is then imperative to understand the structural properties of β-glucans to fully reveal their biological roles and potential applications. The deconstruction of β-glucans is a result of β-glucanase activity. In addition to being invaluable tools for the study of β-glucans, these enzymes have applications in numerous biotechnological and industrial processes, both alone and in conjunction with their natural substrates. Here, we review potential applications for β-glucans and β-glucanases, and explore how their functionalities are dictated by their structure. 相似文献
14.
Borbla Gmes Eszter Takcs Inna Szkcs Robert Horvath Andrs Szkcs 《International journal of molecular sciences》2022,23(20)
Transmembrane glycoprotein integrins play crucial roles in biochemical processes, and by their inhibition or activation, different signal pathways can be disrupted, leading to abnormal physiological functions. We have previously demonstrated the inhibitory effect of glyphosate herbicide’s active ingredient on cell adhesion and its αvβ3 integrin antagonist effect. Therefore, it appeared particularly exciting to investigate inhibition of glyphosate and its metabolites on a wider range of Arg-Gly-Asp (RGD) binding integrins, namely αvβ3, α5β1 and αllbβ3. Thus, the purpose of this study was to assess how extended the inhibitory effect observed for glyphosate on the integrin αvβ3 is in terms of other RGD integrins and other structurally or metabolically related derivatives of glyphosate. Five different experimental setups using enzyme-linked immunosorbent assays were applied: (i) αvβ3 binding to a synthetic polymer containing RGD; (ii) αvβ3 binding to its extracellular matrix (ECM) protein, vitronectin; (iii) α5β1 binding to the above polymer containing RGD; (iv) αllbβ3 binding to its ECM protein, fibrinogen and (v) αvβ3 binding to the SARS-CoV-2 spike protein receptor binding domain. Total inhibition of αvβ3 binding to RGD was detected for glyphosate and its main metabolite, aminomethylphosphonic acid (AMPA), as well as for acetylglycine on α5β1 binding to RGD. 相似文献
15.
Marek Bajda Jakub Jończyk Barbara Malawska S?awomir Filipek 《International journal of molecular sciences》2014,15(3):5128-5139
β-Secretase (BACE-1) constitutes an important target for search of anti-Alzheimer’s drugs. The first inhibitors of this enzyme were peptidic compounds with high molecular weight and low bioavailability. Therefore, the search for new efficient non-peptidic inhibitors has been undertaken by many scientific groups. We started our work from the development of in silico methodology for the design of novel BACE-1 ligands. It was validated on the basis of crystal structures of complexes with inhibitors, redocking, cross-docking and training/test sets of reference ligands. The presented procedure of assessment of the novel compounds as β-secretase inhibitors could be widely used in the design process. 相似文献
16.
Sunhyo Ryu Yonghee Lee Moo Yeol Hyun Sun Young Choi Kwan Ho Jeong Young Min Park Hoon Kang Kui Young Park Cheryl A. Armstrong Andrew Johnson Peter I. Song Beom Joon Kim 《International journal of molecular sciences》2014,15(9):16800-16815
Recently, various immunosuppressant drugs have been shown to induce hair growth in normal hair as well as in alopecia areata and androgenic alopecia; however, the responsible mechanism has not yet been fully elucidated. In this study, we investigate the influence of mycophenolate (MPA), an immunosuppressant, on the proliferation of human dermal papilla cells (hDPCs) and on the growth of human hair follicles following catagen induction with interferon (IFN)-γ. IFN-γ was found to reduce β-catenin, an activator of hair follicle growth, and activate glycogen synthase kinase (GSK)-3β, and enhance expression of the Wnt inhibitor DKK-1 and catagen inducer transforming growth factor (TGF)-β2. IFN-γ inhibited expression of ALP and other dermal papillar cells (DPCs) markers such as Axin2, IGF-1, and FGF 7 and 10. MPA increased β-catenin in IFN-γ-treated hDPCs leading to its nuclear accumulation via inhibition of GSK3β and reduction of DKK-1. Furthermore, MPA significantly increased expression of ALP and other DPC marker genes but inhibited expression of TGF-β2. Therefore, we demonstrate for the first time that IFN-γ induces catagen-like changes in hDPCs and in hair follicles via inhibition of Wnt/β-catenin signaling, and that MPA stabilizes β-catenin by inhibiting GSK3β leading to increased β-catenin target gene and DP signature gene expression, which may, in part, counteract IFN-γ-induced catagen in hDPCs. 相似文献
17.
18.
Sylwia Belica-Pacha Mateusz Dako Vyacheslav Buko Ilya Zavodnik Katarzyna Miowska Maria Bryszewska 《International journal of molecular sciences》2021,22(22)
The interaction between sertraline hydrochloride (SRT) and randomly methylated β-cyclodextrin (RMβCD) molecules have been investigated at 298.15 K under atmospheric pressure. The method used—Isothermal Titration Calorimetry (ITC) enabled to determine values of the thermodynamic functions like the enthalpy (ΔH), the entropy (ΔS) and the Gibbs free energy (ΔG) of binding for the examined system. Moreover, the stoichiometry coefficient of binding (n) and binding/association constant (K) value have been calculated from the experimental results. The obtained outcome was compared with the data from the literature for other non-ionic βCD derivatives interacting with SRT and the enthalpy-entropy compensation were observed and interpreted. Furthermore, the connection of RMβCD with SRT was characterized by circular dichroism spectroscopy (CD) and complexes of βCD derivatives with SRT were characterized through the computational studies with the use of molecular docking (MD). 相似文献
19.
A huge effort has been devoted to developing drugs targeting integrins over 30 years, because of the primary roles of integrins in the cell-matrix milieu. Five αv-containing integrins, in the 24 family members, have been a central target of fibrosis. Currently, a small molecule against αvβ1 is undergoing a clinical trial for NASH-associated fibrosis as a rare agent aiming at fibrogenesis. Latent TGFβ activation, a distinct talent of αv-integrins, has been intriguing as a therapeutic target. None of the αv-integrin inhibitors, however, has been in the clinical market. αv-integrins commonly recognize an Arg-Gly-Asp (RGD) sequence, and thus the pharmacophore of inhibitors for the 5-integrins is based on the same RGD structure. The RGD preference of the integrins, at the same time, dilutes ligand specificity, as the 5-integrins share ligands containing RGD sequence such as fibronectin. With the inherent little specificity in both drugs and targets, “disease specificity” has become less important for the inhibitors than blocking as many αv-integrins. In fact, an almighty inhibitor for αv-integrins, pan-αv, was in a clinical trial. On the contrary, approved integrin inhibitors are all specific to target integrins, which are expressed in a cell-type specific manner: αIIbβ3 on platelets, α4β1, α4β7 and αLβ2 on leukocytes. Herein, “disease specific” integrins would serve as attractive targets. α8β1 and α11β1 are selectively expressed in hepatic stellate cells (HSCs) and distinctively induced upon culture activation. The exceptional specificity to activated HSCs reflects a rather “pathology specific” nature of these new integrins. The monoclonal antibodies against α8β1 and α11β1 in preclinical examinations may illuminate the road to the first medical agents. 相似文献