首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the problem of localized energy aware routing in mobile ad hoc networks. In localized routing algorithms, each node forwards a message based on the position of itself, its neighbors and the destination. The objective of energy aware routing algorithms is to minimize the total power for routing a message from source to destination or to maximize the total number of routing tasks that a node can perform before its battery power depletes. In this paper we propose new localized energy aware routing algorithms called OLEAR. The algorithms have very high packet delivery rate with low packet forwarding and battery power consumption. In addition, they ensure good energy distribution among the nodes. Finally, packets reach the destination using smaller number of hops. All these properties make our algorithm suitable for routing in any energy constrained environment. We compare the performance of our algorithms with other existing energy and non‐energy aware localized algorithms. Simulation experiments show that our algorithms present comparable energy consumption and distribution to other energy aware algorithms and better packet delivery rate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
赵方圆  韩昌彩  李媛 《信号处理》2013,29(4):480-485
为最大化无线自组织网络的吞吐量,提出一种自适应的协作路由算法。在算法中,协作分集技术与路由选择相结合,通过在路由的每一跳选择最佳的中继节点协作发送节点传输信息来改善网络吞吐量。首先通过目的序列距离矢量路由协议(DSDV)初步建立最短路由路径,在每条链路的发送节点和接收节点根据邻节点表选出公共邻居节点,建立候选中继集合;进一步,每一跳根据链路吞吐量,在候选中继集合中自适应选择最多两个中继来协助发送节点进行传输,并根据选出的中继节点数动态分配节点发射功率。在保证系统发射功率一定的情况下,最大化网络吞吐量。仿真结果表明,在相同的发射功率下,相对于非协作路由DSDV算法,采用固定数量中继的协作路由算法提高了整个网络的吞吐量,而自适应的协作路由算法可进一步提高吞吐量;同时仿真了网络吞吐量与网络规模和节点最大移动速度的变化关系。   相似文献   

3.
Energy efficiency has become an important design consideration in geographic routing protocols for wireless sensor networks because the sensor nodes are energy constrained and battery recharging is usually not feasible. However, numerous existing energy‐aware geographic routing protocols are energy‐inefficient when the detouring mode is involved in the routing. Furthermore, most of them rarely or at most implicitly take into account the energy efficiency in the advance. In this paper, we present a novel energy‐aware geographic routing (EAGR) protocol that attempts to minimize the energy consumption for end‐to‐end data delivery. EAGR adaptively uses an existing geographic routing protocol to find an anchor list based on the projection distance of nodes for guiding packet forwarding. Each node holding the message utilizes geographic information, the characteristics of energy consumption, and the metric of advanced energy cost to make forwarding decisions, and dynamically adjusts its transmission power to just reach the selected node. Simulation results demonstrate that our scheme exhibits higher energy efficiency, smaller end‐to‐end delay, and better packet delivery ratio compared to other geographic routing protocols. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Power-aware single- and multipath geographic routing in sensor networks   总被引:1,自引:0,他引:1  
Shibo  K. Seluk 《Ad hoc Networks》2007,5(7):974-997
Nodes in a sensor network, operating on power limited batteries, must save power to minimize the need for battery replacement. We note that the range of transmission has a significant effect on the power consumption of both the transmitting node and listeners. This paper first presents a Geographical Power Efficient Routing (GPER) protocol for sensor networks. Each sensor node makes local decisions as to how far to transmit: therefore, the protocol is power efficient, localized, highly distributed, and scalable. In GPER, given a final destination, each node first establishes a subdestination within its maximum radio range. The node, however, may decide to relay the packet to this subdestination through an intermediary node or alter the subdestination if this will preserve power. Traditional deterministic geographic routing algorithms aim at achieving close to the shortest weighted paths. However, they normally stick to the same paths for the same source/destination pairs. This may conversely drain the nodes on these paths and result in short network life when the communication in the network is unevenly distributed. Thus, we further investigate a set of probabilistic multipath routing algorithms, which generate braided multipaths based only on local information. The algorithms have less communication and storage overhead than conventional on-demand multipath routing algorithms, while providing greater resilience to node failures. Simulations on NS2 show that GPER almost halves the power consumption in the network relative to alternative geographic routing algorithms. Furthermore, in situations where the communication tasks are non-uniformly distributed, probabilistic multipath routing contributes up to an additional 30% to network lifetime.  相似文献   

5.
Multicasting for delay-tolerant networks (DTNs) in sparse social network scenarios is a challenge due to the deficiency of end-to-end paths. In social network scenarios, the behaviors of their nodes are controlled by human beings, and node mobility is the same as that of humans. To design the multicasting algorithms for DTNs, therefore, it would be promising to capture the intrinsic characteristics of relationships among these nodes. In this paper, multicasting in DTNs is regarded as a message dissemination issue in social networks, and an egocentric network focused community aware multicast routing algorithm (ENCAR) is proposed. As distinct from some social-based routing algorithms which only focus on centrality analysis, ENCAR is an utility based and hierarchical routing algorithm, its utility function is constructed on the basis of centrality analysis and destination-oriented contact probability. We take notice of clustering phenomenon in social networks, and present the community aware forwarding schemes. In addition, to simulate the mobility of individuals in social networks, a novel community based random way point mobility model is also presented. In this paper, the performance of ENCAR is theoretically analyzed and further evaluated on simulator ONE. Simulation results show that ENCAR outperforms most of the existing multicast routing algorithms in routing overhead, on condition that delivery ratio is relatively high, with other significant parameters guaranteed to perform well.  相似文献   

6.
This paper presents a QoS (quality of service) aware routing and power control algorithm consuming low transmission power for multimedia service over mobile ad hoc network. Generally, multimedia services need stringent QoS over the network. However, it is not easy to guarantee the QoS over mobile ad hoc network since its network resources are very limited and time‐varying. Furthermore, only a limited amount of power is available at mobile nodes, which makes the problem more challenging. We propose an effective routing and power control algorithm for multimedia services that satisfies end‐to‐end delay constraint with low transmission power consumption. The proposed algorithm supports the required bandwidth by controlling each link channel quality over route in a tolerable range. In addition, a simple but effective route maintenance mechanism is implemented to avoid link failures that may significantly degrade streaming video quality. Finally, performance comparison with existing algorithms is presented in respect to traditional routing performance metrics, and an achievable video quality comparison is provided to demonstrate the superiority of the proposed algorithm for multimedia services over mobile ad hoc network. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A mobile ad hoc network (MANET) is an autonomous collection of mobile nodes that communicate over relatively bandwidth‐constrained wireless links. MANETs need efficient algorithms to determine network connectivity, link scheduling, and routing. An important issue in network routing for MANETs is to conserve power while still achieve a high packet success rate. Traditional MANET routing protocols do not count for such concern. They all assume working with unlimited power reservoirs. Several ideas have been proposed for adding power‐awareness capabilities to ad hoc networks. Most of these proposals tackle the issue by either proposing new power‐aware routing protocols or modifying existing routing protocols through the deployment of power information as cost functions. None of them deal with counter‐measures that ought to be taken when nodes suffer from low power reserves and are subject to shut down in mid of normal network operations. In this paper, power‐awareness is added to a well‐known traditional routing protocol, the ad hoc on‐demand distance vector (AODV) routing protocol. The original algorithm is modified to deal with situations in which nodes experience low power reserves. Two schemes are proposed and compared with the original protocol using different performance metrics such as average end‐to‐end delays, transmission success rates, and throughputs. These schemes provide capabilities for AODV to deal with situations in which operating nodes have almost consumed their power reserves. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
QoS Routing is crucial for QoS provisioning in high‐speed networks. In general, QoS routing can be classified into two paradigms: source routing and hop‐by‐hop routing. In source routing, the entire path to the destination node of a communication request is locally computed at the source node based on the global state that it maintains, which does not scale well to large networks. In hop‐by‐hop routing, a path‐selecting process is shared among intermediate nodes between the source node and the destination node, which can largely improve the protocol scalability. In this paper, we present the design of hop‐by‐hop routing with backup route information such that each intermediate node can recursively update the best known feasible path, if possible, by collectively utilizing the routing information gathered thus far and the information that it locally stores. Such a route is kept as a backup route and its path cost is used as a reference to guide the subsequent routing process to search for a lower‐cost constrained path and avoid performance degradation. In this way, the information gathered is maximally utilized for improved performance. We prove the correctness of our presented algorithm and deduce its worst message complexity to be O(∣V2), where ∣V∣ is the number of network nodes. Simulation results indicate that, however, the designed algorithm requires much fewer messages on average. Therefore it scales well with respect to the network size. Moreover, simulation results demonstrate that the cost performance of our algorithm is near‐optimal. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we present new algorithms for online multicast routing in ad hoc networks where nodes are energy-constrained. The objective is to maximize the total amount of multicast message data routed successfully over the network without any knowledge of future multicast request arrivals and generation rates. Specifically, we first propose an online algorithm for the problem based on an exponential function of energy utilization at each node. The competitive ratio of the proposed algorithm is analyzed if admission control of multicast requests is permitted. We then provide another online algorithm for the problem, which is based on minimizing transmission energy consumption for each multicast request and guaranteeing that the local network lifetime is no less than gamma times of the optimum, where gamma is constant with 0 < gammaleq 1. We finally conduct extensive experiments by simulations to analyze the performance of the proposed algorithms, in terms of network capacity, network lifetime, and transmission energy consumption for each multicast request. The experimental results clearly indicate that, for online multicast routing in ad hoc wireless networks, the network capacity is proportional to the network lifetime if the transmission energy consumption for each multicast request is at the same time minimized. This is in contrast to the implication by Kar et al. that the network lifetime is proportional to the network capacity when they considered the online unicast routing by devising an algorithm based on the exponential function of energy utilization at each node.  相似文献   

10.
We propose a class of novel energy‐efficient multi‐cost routing algorithms for wireless mesh networks, and evaluate their performance. In multi‐cost routing, a vector of cost parameters is assigned to each network link, from which the cost vectors of candidate paths are calculated using appropriate operators. In the end these parameters are combined in various optimization functions, corresponding to different routing algorithms, for selecting the optimal path. We evaluate the performance of the proposed energy‐aware multi‐cost routing algorithms under two models. In the network evacuation model, the network starts with a number of packets that have to be transmitted and an amount of energy per node, and the objective is to serve the packets in the smallest number of steps, or serve as many packets as possible before the energy is depleted. In the dynamic one‐to‐one communication model, new data packets are generated continuously and nodes are capable of recharging their energy periodically, over an infinite time horizon, and we are interested in the maximum achievable steady‐state throughput, the packet delay, and the energy consumption. Our results show that energy‐aware multi‐cost routing increases the lifetime of the network and achieves better overall network performance than other approaches. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Due to inherent issue of energy limitation in sensor nodes, the energy conservation is the primary concern for large‐scale wireless sensor networks. Cluster‐based routing has been found to be an effective mechanism to reduce the energy consumption of sensor nodes. In clustered wireless sensor networks, the network is divided into a set of clusters; each cluster has a coordinator, called cluster head (CH). Each node of a cluster transmits its collected information to its CH that in turn aggregates the received information and sends it to the base station directly or via other CHs. In multihop communication, the CHs closer to the base station are burdened with high relay load; as a result, their energy depletes much faster as compared with other CHs. This problem is termed as the hot spot problem. In this paper, a distributed fuzzy logic‐based unequal clustering approach and routing algorithm (DFCR) is proposed to solve this problem. Based on the cluster design, a multihop routing algorithm is also proposed, which is both energy efficient and energy balancing. The simulation results reinforce the efficiency of the proposed DFCR algorithm over the state‐of‐the‐art algorithms, ie, energy‐aware fuzzy approach to unequal clustering, energy‐aware distributed clustering, and energy‐aware routing algorithm, in terms of different performance parameters like energy efficiency and network lifetime.  相似文献   

12.
Reducing the energy consumption of network nodes is one of the most important problems for routing in wireless sensor networks because of the battery limitation in each sensor. This paper presents a new ant colony optimization based routing algorithm that uses special parameters in its competency function for reducing energy consumption of network nodes. In this new proposed algorithm called life time aware routing algorithm for wireless sensor networks (LTAWSN), a new pheromone update operator was designed to integrate energy consumption and hops into routing choice. Finally, with the results of the multiple simulations we were able to show that LTAWSN, in comparison with the previous ant colony based routing algorithm, energy aware ant colony routing algorithms for the routing of wireless sensor networks, ant colony optimization-based location-aware routing algorithm for wireless sensor networks and traditional ant colony algorithm, increase the efficiency of the system, obtains more balanced transmission among the nodes and reduce the energy consumption of the routing and extends the network lifetime.  相似文献   

13.
在PSN(pocket switched network)中实现数据传输成功率与传输延迟的有效平衡是当前有待解决的问题。提出一种基于社会属性的PSN路由算法——BridgingCom算法,该算法使用带有衰退机制的局部社区识别方法,引入桥接中心度(bridging centrality)作为中继节点的选择依据,将社会网络中节点重要性与移动社会网络的特征相结合,考虑了节点社区关系和节点活跃度对路由算法的影响。实验表明,该算法与现有经典算法相比能够获得较高的传输效率和较低的传输延迟。  相似文献   

14.
A wireless ad hoc network consists of mobile nodes that are powered by batteries. The limited battery lifetime imposes a severe constraint on the network performance, energy conservation in such a network thus is of paramount importance, and energy efficient operations are critical to prolong the lifetime of the network. All-to-all multicasting is one fundamental operation in wireless ad hoc networks, in this paper we focus on the design of energy efficient routing algorithms for this operation. Specifically, we consider the following minimum-energy all-to-all multicasting problem. Given an all-to-all multicast session consisting of a set of terminal nodes in a wireless ad hoc network, where the transmission power of each node is either fixed or adjustable, assume that each terminal node has a message to share with each other, the problem is to build a shared multicast tree spanning all terminal nodes such that the total energy consumption of realizing the all-to-all multicast session by the tree is minimized. We first show that this problem is NP-Complete. We then devise approximation algorithms with guaranteed approximation ratios. We also provide a distributed implementation of the proposed algorithm. We finally conduct experiments by simulations to evaluate the performance of the proposed algorithm. The experimental results demonstrate that the proposed algorithm significantly outperforms all the other known algorithms.  相似文献   

15.
An algorithm is defined for establishing routing tables in the individual nodes of a data network. The routing table at a nodeispecifies, for each other nodej, what fraction of the traffic destined for nodejshould leave nodeion each of the links emanating from nodei. The algorithm is applied independently at each node and successively updates the routing table at that node based on information communicated between adjacent nodes about the marginal delay to each destination. For stationary input traffic statistics, the average delay per message through the network converges, with successive updates of the routing tables, to the minimum average delay over all routing assignments. The algorithm has the additional property that the traffic to each destination is guaranteed to be loop free at each iteration of the algorithm. In addition, a new global convergence theorem for noncontinuous iteration algorithms is developed.  相似文献   

16.
Energy is an important issue in mobile ad hoc networks (MANETs), and different energy‐aware routing mechanisms have been proposed to minimize the energy consumption in MANETs. Most of the energy‐aware routing schemes reported in the literature have considered only the residual battery capacity as the cost metric in computing a path. In this paper, we have proposed, an energy‐aware routing technique which considers the following parameters: (i) a cost metric, which is a function of residual battery power and energy consumption rate of participating nodes in path computation; (ii) a variable transmission power technique for transmitting data packets; and (iii) To minimize the over‐utilization of participating nodes, a limit is set on the number of paths that can be established to a destination through a participating node. The proposed scheme is simulated using Qualnet 4.5 simulator, and compared with Ad hoc On‐Demand Distance Vector (AODV) and Lifetime Enhancement Routing (LER). We observed that the proposed scheme performs better in terms of network lifetime and energy consumption. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The past few years have witnessed a surge of wireless mesh networks (WMNs)‐based applications and heterogeneous WMNs are taking advantage of multiple radio interfaces to improve network performance. Although many routing protocols have been proposed for heterogeneous WMNs, most of them mainly relied on hierarchical or cluster techniques, which result in high routing overhead and performance degradation due to low utilization of wireless links. This is because only gateway nodes are aware of all the network resources. In contrast, a unified routing protocol (e.g., optimal link state routing (OLSR)), which treats the nodes and links equally, can avoid the performance bottleneck incurred by gateway nodes. However, OLSR has to pay the price for unification, that is, OLSR introduces a great amount of routing overhead for broadcasting routing message on every interface. In this paper, we propose unified routing protocol (URP), which is based on passive bandwidth measurement for heterogeneous WMNs. Firstly, we use the available bandwidth as a metric of the unification and propose a low‐cost passive available bandwidth estimation method to calculate expected transmission time that can capture the dynamics of wireless link more accurately. Secondly, based on the estimated available bandwidth, we propose a multipoint relays selection algorithm to achieve higher transmission ability and to help accelerate the routing message diffusion. Finally, instead of broadcasting routing message on all channels, nodes running URP transmit routing message on a set of selected high bandwidth channels. Results from extensive simulations show that URP helps improve the network throughput and to reduce the routing overhead compared with OLSR and hierarchical routing. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
ASCENT: adaptive self-configuring sensor networks topologies   总被引:3,自引:0,他引:3  
Advances in microsensor and radio technology enable small but smart sensors to be deployed for a wide range of environmental monitoring applications. The low-per node cost allows these wireless networks of sensors and actuators to be densely distributed. The nodes in these dense networks coordinate to perform the distributed sensing and actuation tasks. Moreover, as described in this paper, the nodes can also coordinate to exploit the redundancy provided by high density so as to extend overall system lifetime. The large number of nodes deployed in this systems preclude manual configuration, and the environmental dynamics precludes design-time preconfiguration. Therefore, nodes have to self-configure to establish a topology that provides communication under stringent energy constraints. ASCENT builds on the notion that, as density increases, only a subset of the nodes is necessary to establish a routing forwarding backbone. In ASCENT, each node assesses its connectivity and adapts its participation in the multihop network topology based on the measured operating region. This paper motivates and describes the ASCENT algorithm and presents analysis, simulation, and experimental measurements. We show that the system achieves linear increase in energy savings as a function of the density and the convergence time required in case of node failures while still providing adequate connectivity.  相似文献   

19.
The design of routing protocol with energy efficiency and security is a challenging task. To overcome this challenge, we propose energy-efficient secured routing protocol. The objective of our work is to provide a secured routing protocol, which is energy efficient. To provide security for both link and message without relying on the third party, we provide security to the protocol by choosing a secure link for routing using Secure Optimized Link State Routing Protocol. Each node chooses multipoint relay nodes amongst the set of one-hop neighbors, so as to reach all two-hop neighbors. The access control entity authorizes nodes announcing the node identification to the network. In addition, the access control entity signs a public key Ki, a private key ki, and the certificate Ci required by an authorized node to obtain the group key. Each node maintains a route table with power status as one of its entry. After selecting the link, on requirement of a new route, we check nodes’ power status in its routing table and then accordingly arise a route. Then, we perform group key distribution using the generated keys using a small number of messages which helps reducing energy consumption. The group key can be altered periodically to avoid nonauthorized nodes and to avoid the use of the same group key in more than some amount of data. Then, we provide communication privacy for both message sender and message recipient using Secure Source Anonymous Message Authentication Scheme. Thereby, the message sender or the sending node generates a source anonymous message authentication for message for releasing each message based on the MES scheme. Hence, our approach will provide message content authenticity without relying on any trusted third parties.  相似文献   

20.
This paper proposes a power efficient multipath video packet scheduling scheme for minimum video distortion transmission (optimised Video QoS) over wireless multimedia sensor networks. The transmission of video packets over multiple paths in a wireless sensor network improves the aggregate data rate of the network and minimizes the traffic load handled by each node. However, due to the lossy behavior of the wireless channel the aggregate transmission rate cannot always support the requested video source data rate. In such cases a packet scheduling algorithm is applied that can selectively drop combinations of video packets prior to transmission to adapt the source requirements to the channel capacity. The scheduling algorithm selects the less important video packets to drop using a recursive distortion prediction model. This model predicts accurately the resulting video distortion in case of isolated errors, burst of errors and errors separated by a lag. Two scheduling algorithms are proposed in this paper. The Baseline scheme is a simplified scheduler that can only decide upon which packet can be dropped prior to transmission based on the packet’s impact on the video distortion. This algorithm is compared against the Power aware packet scheduling that is an extension of the Baseline capable of estimating the power that will be consumed by each node in every available path depending on its traffic load, during the transmission. The proposed Power aware packet scheduling is able to identify the available paths connecting the video source to the receiver and schedule the packet transmission among the selected paths according to the perceived video QoS (Peak Signal to Noise Ratio—PSNR) and the energy efficiency of the participating wireless video sensor nodes, by dropping packets if necessary based on the distortion prediction model. The simulation results indicate that the proposed Power aware video packet scheduling can achieve energy efficiency in the wireless multimedia sensor network by minimizing the power dissipation across all nodes, while the perceived video quality is kept to very high levels even at extreme network conditions (many sensor nodes dropped due to power consumption and high background noise in the channel).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号