首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper the influence of notch acuity and test temperature on the impact behavior of aluminum alloy 6061 is presented and discussed. Notch angles of 45°, 60°, 75° and 90° were chosen for a standard charpy impact test specimen containing two such notches positioned at right angles to the applied load. For a given angle of the notch the dynamic fracture toughness increased with an increase in test temperature. At a given test temperature, the impact toughness of a ductile microstructure decreased with an increase in notch severity. For the least severe notch dynamic fracture surfaces revealed the occurrence of localized mixed-mode deformation at the elevated temperature. An increase in notch severity resulted in essentially Mode-I dominated fracture at all test temperatures. The results are discussed in light of alloy microstructure, fracture mechanisms and deformation field ahead of the advancing crack tip.  相似文献   

2.
The fracture behavior of epoxy resin used as one of electrical insulation materials is generally brittle compared with that of metals. Therefore, when epoxy resin is used as a structural material, the effect of impact loading must be taken into consideration in design. In the present study, the dynamic fracture toughness of epoxy resin filled with SiO2 particles has been evaluated both by the absorbed energy method and by the impact load obtained from the instrumented Charpy type impact test. Therefore, the absorbed energy has been analysed to evaluate the real fracture toughness. Moreover, the influence of inertial loading on the impact load must be also considered; therefore, the dynamic fracture toughness has been evaluated by the formula taking the inertial loading effect into consideration. Thus both fracture toughness values evaluated from absorbed energy and from impact load have been compared; as a result, a good agreement has been ascertained.It is common to perform impact test on specimens with blunt notches since they are easy to be prepared. However, variation of fracture toughness with notch root radius in the brittle material cannot be ignored. Therefore, the influence of notch root radius on the fracture toughness has been examined. As a result, it has been ascertained that the variation of fracture toughness with notch root radius follows the formula presented by Williams.  相似文献   

3.
The influence of notch radius on the fracture behavior of two high-strength Al–Zn–Mg–Cu alloys with different Fe content in the T73 condition was investigated. The fracture toughness tests were performed on non-fatigue-precracked notched bending specimens with different notch radii ranged from 0.15 mm to 1.0 mm. The obtained data were interpreted using the concept of Notch Fracture Mechanics combined with finite-element method (FEM) calculations. It was found that both alloys are very sensitive to the notch radius. The fracture toughness increases with increasing notch radius. For a given notch radii, the increase in fracture toughness is more significant for the more pure alloy. The fracture behavior of investigated alloys with respect to microstructural features and their relation with the fracture micromechanisms were analyzed.  相似文献   

4.
AZ31镁合金的缺口冲击韧性及其断裂机理   总被引:2,自引:0,他引:2  
缺口冲击韧性是金属材料应用的一个重要动态性能指标。本文针对AZ31镁合金板材,在-80~260℃范围内,进行了Charpy V型缺口冲击试验,测试了其缺口冲击韧性随温度变化的规律,试验结果表明:在120~160℃范围内,AZ31镁合金存在韧脆转变现象,根据能量标准和延性标准测得的韧脆转变温度均为140℃。并通过SEM手段对-80℃、0℃、80℃、140℃、200℃以及260℃等典型温度下的冲击断口形貌进行了比较分析,结果表明在-80~80℃范围内断口为准解理形貌;80~200℃范围内断口形貌是准解理+韧窝;200~260℃温度范围内断口是韧窝形貌。  相似文献   

5.
Influence of temperature on impact fracture behavior of an alloy steel   总被引:1,自引:0,他引:1  
In this paper, the influence of temperature on impact toughness and fracture behavior of alloy steel (AISI Classification 8320) is presented and discussed. Impact toughness decreased with a decrease in test temperature. The extrinsic influence of temperature on impact toughness–fracture resistance relationships is rationalized in light of the conjoint and mutually interactive influences of intrinsic microstructural features, local stress states and macroscopic fracture behavior.  相似文献   

6.
The viability of the instrumented Charpy impact testing for studying dynamic fracture behaviour of rotor steels is investigated. This encompasses determination of dynamic fracture toughness (KId) and dynamic J-integral (JId), establishing correlation between oscilloscope profiles and fracture morphology of the ruptured samples and identifying fracture mechanisms involved. The predicted oscilloscope profiles for common fracture modes, their experimental counterparts, and the inferences drawn from these concerning operating fracture mechanisms are in good accord with the fractographic observations made on broken samples. Thus, the respective oscillographs vividly manifest the observed variations in the fracture processes. Fracture mechanics analysis of load-time and energy-time records of pre-cracked Charpy samples gave dynamic fracture toughness (KId) values of 43, 74 and 124MN/m3/2, and dynamic J-integral (JId) values of 0.008, 0.03 and 0.06 MJ/m2 at −180°, 26° and 96°C respectively. It is possible that the deduced JId values correspond to a small but finite amount of crack extension instead of Zero Crack extension, in line with the emerging trends of JId estimation. Apart from increasing with temperature, both parameters recorded a true transition around 35°C which is attributed to the combined influence of a change in the fracture mode and relaxation of crack tip constraint. Another significant outcome of this investigation concerns about the existence of a minimum crack depth ratio for valid JId determination which, based on a detailed fractographic study, is interpreted in terms of the collective influence of crack tip plasticity and notch constraint.  相似文献   

7.
Failure of an old rope from a stringing lattice transmission towers occurred in winter while the rope was being removed to make way for a new rope. Fracture took place around mid-span. At that time, ambient temperature was −22 °C. Wire rope was in service for nearly 50 years. We were given the mandate to determine the reasons for the fracture of the wire rope and also to suggest measures to prevent such failures from occurring. The study involved laboratory testing (mechanical and metallographic) of representative wire rope samples. The effect of low temperature (from room temperature to −40 °C) on the tensile behavior of wires and wire rope samples was evaluated. In addition, we designed an instrumented impact test to assess the effect of notches, low temperatures and dynamic loading on the fracture behavior; however, no standards were available for direct comparison. Optical metallography was used to judge the extent of corrosion and the nature of microstructure and the cleanliness of the steel. The fracture morphology of broken tensile and impact specimens was carried out using scanning electron microscopy to establish relations between test parameters and fracture modes. Results indicate that considerations have to be given to the occurrence of corrosion, notches, low temperatures, and dynamic loading conditions when replacing wire ropes and this may necessitate the replacement of wire rope earlier than the time dictated by the criterion of 10% loss in breaking strength. Results also indicate that impact testing is a better evaluator of the susceptibility of wire ropes to brittle fracture than tensile tests.  相似文献   

8.
The damage and rupture mechanisms of thin sheets of 2024 aluminum alloy (Al containing Cu, Mn, and Mg elements) are investigated. Two grades are studied: a standard alloy and a high damage tolerance alloy. The microstructure of each material is characterized to obtain the second phase volume content, the dimensions of particles and the initial void volume fraction. The largest particles consist of intermetallics. Mechanical tests are carried out on flat specimens including U-notched (with various notch radii), sharply V-notched and smooth tensile samples. Stable crack growth was studied using “Kahn samples” and pre-cracked large center-cracked tension panels M(T). The macroscopic fracture surface of the different specimens is observed using scanning electron microscopy. Smooth and moderately notched samples exhibit a slant fracture surface, which has an angle of about 45° with respect to the loading direction. With increasing notch severity, the fracture mode changes significantly. Failure initiates at the notch root in a small triangular region perpendicular to the loading direction. Outside this zone, slant fracture is observed. Microscopic observations show two failure micromechanisms. Primary voids are first initiated at intermetallic particles in both cases. In flat regions, i.e. near the notch root of severely notched samples, void growth is promoted and final rupture is caused by “internal necking” between the large cavities. In slanted regions these voids tend to coalesce rapidly according to a “void sheet mechanism” which leads to the formation of smaller secondary voids in the ligaments between the primary voids. These observations can be interpreted using finite element simulations. In particular, it is shown that crack growth occurs under plane strain conditions along the propagation direction.  相似文献   

9.
The effect of the thermal cycle of diffusion welding on the service characteristics of BT-16 titanium alloy are considered. Using standard test equipment the mechanical properties of the alloy after thermal cycling to 860 or 960°C were studied at test temperatures of 960, 860, 300 and 20°C and the fatigue strength and fracture toughness were studied at room temperature.

It was shown that although specimens welded at 960°C displayed superior plastic properties, these were only partially effective in arresting propagating cracks. A greater fatigue crack resistance was seen with material welded at 860°C and it is this temperature which is recommended for diffusion bonding BT-16 titanium alloy components.  相似文献   


10.
The dynamic fracture behavior of polymethylmethacrylate (bdPMMA) has been investigated. The specimens were in the form of rectangular sheets with sharp notches. The elastodynamic crack tip stress field and the crack velocity were determined by the use of resistance strain gauges. An analytic expression for the dynamic crack tip stress field was used to evaluate the dynamic stress intensity factors, and the dynamic arrest toughness was also determined.The dynamic response of the stresses at the notch tip at varying loading rates was considered and some “hysteresis” fracture phenomena were observed.  相似文献   

11.
Precracked Charpy V-notch specimens of the nickel base alloy Nimonic 86 in the as-received condition have been tested using an instrumented impact tester (hammer) in the temperature range 293 ≤ T/K ≤ 1223. The specific impact energies were determined by dial readings from the maximum angle of the afterswing after the impact, from the integration of the load versus time and the load versus load point displacement diagrams; in all cases the agreement was excellent. The specific impact energy and the impulse are correlated with the test temperature. The dynamic fracture toughness values were determined following the equivalent energy approach. While the temperature dependency of the specific impact energies and the impulses reveal a distinct maximum at T = 773 K (500°C) no such maximum in the temperature dependence of the dynamic fracture toughness was observed. The fracture surfaces show distinct elasto-plastic fracture behaviour of the material in the temperature regime investigated.  相似文献   

12.
STATIC AND DYNAMIC FRACTURE TOUGHNESS OF AN Al-Li 8090 ALLOY PLATE   总被引:1,自引:0,他引:1  
Abstract— The static and dynamic fracture toughness of an Al-Li 8090 alloy plate was evaluated as a function of notch orientation. Static fracture toughness is marginally lower than the dynamic fracture toughness in all the three notch orientations that were studied. The fracture mechanism remains unchanged and the degree of in-plane anisotropy is significant, but more or less similar under static and dynamic conditions.  相似文献   

13.
The microstructure, mechanical properties and fracture behavior of gravity die cast Mg–4Y–2Nd–1Gd–0.4Zr (wt.%) (WNG421) alloy are studied at room temperature in different thermal conditions, including as-cast, solution-treated and different aging-treated (both isothermal and two-step aging) conditions. The results indicate that WNG421 alloy shows different behaviors of crack initiation and propagation in different thermal conditions during tensile test at room temperature. After pre-aged at 200 °C for 5 h, the hardness of WNG421 alloy first reduces and then increases when secondary aged at 250 °C (two-step aging). The peak hardness and corresponding tensile strength of the two-step aged alloy both increases compared with those in 250 °C isothermal peak-aged condition. Tensile strength of WNG421 alloy at room temperature in low temperature (200 °C) isothermal peak-aged condition is much higher than that in high temperature (250 °C) isothermal peak-aged condition.  相似文献   

14.
The effects of ferrite grain size, notch acuity and notch length on brittle fracture stress and fracture toughness of notched specimens were experimentally studied at −196°C for a low-carbon steel.

For the case of smaller notch root radius, fracture stress and fracture toughness are not so much conspicuously affected by ferrite grain size. The effect of ferrite grain size will increase with increase of notch root radius. Fracture stress and fracture toughness will decrease with increase of d−1/2 (d = grain size diameter) a smaller range of d−1/2, and increase nearly linearly with increase of d−1/2 in larger range of d−1/2, and, thus have minimum at some value of d−1/2.  相似文献   


15.
Abstract— Two methods are employed, namely the Charpy impact test and a strain gauge technique, for the determination of the dynamic fracture toughnesses of CrNiMoV27 and CrNiMoV45 alloy steels under various impact loading rates and heat treatments. The results show that the dynamic fracture toughness K Id is significantly affected by impact velocity and that tempering has a greater influence on K Id than quenching. It is also shown that the alloy containing a greater amount of vanadium yields consistently a higher value of K id.  相似文献   

16.
Some studies on the impact behavior of banded microalloyed steel   总被引:10,自引:0,他引:10  
Microalloyed steels are used in automobile industries, offshore platforms and in structural applications. It is essential to establish a relation between service consition such as temperature, loading rate and fracture behavior of the steel. Impact study on new material is very handy to understand the mechanicl properties in a rapid and inexpensive way. The present investigation aims to assess impact toughness (CVN), ductile brittle transition temperature (DBTT, 25J), and initiation dynamic fracture toughness (Jld*) of the indigenously developed microallayed seel. The steel has shown banding with alternate layers of ferrite and pearlite. The banding concentration (ferrite bands per mm) has been altered by heat treatment. Presence of banding has given spikes and splits in impact fracture. Change in banding concentration has affected DBTT of the steel, upper shelf energy and the extent of splitting. A model of crack divider with respect to the present microstructure has been analyzed. Banding in divider orientation improves the impact as well as initiation dynamic fracture toughness of the steel. The effect of temperature on splitting is also discussed. Splits in fractured surface disappear with decreasing temperature and higher numbers of splits yield lower toughness. Further, initiation dynamic fracture toughness is calculated for all temperatures and correlated with impact toughness.  相似文献   

17.
This paper reviews and gives new insight into earlier work by the author and his co-workers on the experimental investigation of the influence of superimposed hydrostatic pressure on the mechanical behavior and properties of the epoxy used for the matrix and unidirectionally laminated, graphite-fiber/ epoxy-matrix thick composites. The direction of the fibers was, respectively, 0°, 45° and 90° for the compressive test samples and 0°, 45° -45° and 90° for the shear samples.

Hydrostatic pressure induces very significant, often dramatic changes in the compressive and shear stress/ strain behavior of composites, and consequently in the elastic, yielding, deformation and fracture properties. The range of pressures covered for the compressive experiments was 1 bar to 4 kbar, and for the shear tests 1 bar to 6 kbar. The shear modulus (G) of the epoxy increased bilinearly with pressure, with the break, or the discontinuity point, occurring at 2 kbar. The compressive elastic modulus (E) and the shear modulus (G) of the composites increase in the same manner as for the epoxy. The break, which is located at 2 kbar, represents a pressure at which physical changes in the molecular motion of the matrix epoxy occur. That is, segmental motion of molecules between the cross-links is frozen in by 2 kbar pressure. This pressure is known as the secondary glass transition pressure of the epoxy at room temperature. Alternatively, the sub-zero secondary glass transition temperature of the epoxy is shifted to ambient temperature by 2 kbar pressure. The increase in the moduli may also be given a mechanical interpretation. The elastic or shear modulus of an isotropic, elastic material due to small compressive or shear deformations, respectively, superimposed on a finite volume deformation, which is caused by hydrostatic pressure, increases with pressure. Such an increase in E or G has been predicted using finite deformation theory of elasticity.

The normally brittle epoxy develops yielding when the superimposed hydrostatic pressure exceeds 2 kbar. The shear yield stress (1% off-set) of the epoxy increases linearly with pressure above 2 kbar. This kind of yielding behavior can be predicted by a pressure-dependent yield criterion. The compressive yield strength of the 45° and 90° composites increases bilinearly with pressure, and the shear yield strength of the 0°, 45° and 90° composites also increases bilinearly with pressure. This bilinear behavior is also due to the secondary glass transition pressure of the matrix epoxy, being located at 2 kbar. The fracture strength of the composites also increases with pressure linearly and the greatest increase occurs in the 45° composite in compression and in the −45° composite in shear. The fracture modes of the composites undergo changes with increasing hydrostatic pressure. For instance, the 0° composite undergoes a brittle-ductile transition under shear stress, while no such transition appears to set in under compressive stress. The fracture mode of the 45° composite changes from matrix failure at lower pressures to fiber failure at high pressures under shear stress.  相似文献   


18.
The fracture behaviour of injection-moulded short glass fibre-reinforced, thermoplastic nylon 6.6 plaques has been studied under static loading using compact tension specimens and under impact loading using single-edge notched charpy specimens. The influences of specimen position as taken from the plaque mouldings, notch direction, notch sharpness and the rate of testing on the fracture toughness of this composite system were investigated. Results indicated that the fracture toughness is highest for the cracks perpendicular to the mould fill direction and is lowest for cracks parallel to the mould fill direction. A single fracture parameter, K c, seems to be inadequate for fracture toughness characterization. Evaluation of the fracture toughness as a function of notch sharpness indicated that for notches perpendicular to the mould fill direction the fracture toughness is not affected by the sharpness of the initial notch. However, for cracks in the mould fill direction, sharpness of the initial notch had a significant effect upon the measured value of the fracture toughness. Results also indicated, that the fracture toughness is rate insensitive over the crosshead speed ranging from 0.5–50 mm min–1. Finally, the specimen position, as taken from plaque mouldings, had no significant effect on the measured value of the fracture toughness.  相似文献   

19.
The impact fracture behaviour of notched specimens of polycarbonate has been studied for a range of notch tip radii. For razor-notched specimens a simple fracture toughness analysis is appropriate, as shown by previous workers. Very blunt notches also give constant fracture toughness values, but at a much higher level, corresponding to a different mode of failure. For intermediate notch tip radii the situation is much more complex, and comparison of results for two molecular weight grades shows that the behaviour is molecular weight-dependent. Analysis of these results has been discussed either in terms of a combination of plane strain and plane stress fracture modes, or in terms of a critical stress at the root of the notch, which appears to be appropriate in certain cases.  相似文献   

20.
In this study, the notch fracture toughness (NFT) of high-strength Al alloys was examined by a non-standardized procedure. The NFT is defined as the critical notch stress-intensity factor (NSIF) Kρ,c, which is determined by using several methods of analysis and computing. A set of specimens with different notch root radii made from overaged 7xxx alloy forging was selected. The influence of the notch radius on the fracture toughness of the material was considered. It was found that the notch radius strongly affects the fracture behavior of forged 7xxx alloy in overaged condition. The notch fracture toughness was higher than the fracture toughness of a cracked specimen and increased linearly with notch radius. The critical notch radius was related to the spacing of intermetallic (IM) particles which promote an intergranular or transgranular fracture mechanism according to their size. It appeared that ductile transgranular fracture generated by the formation of dimples around dispersoids and matrix precipitates was predominant which indicates that intense strains are limited to a much smaller zone than the coarse IM particles spacing. This double mechanism is also operate for crack propagation of ductile fatigue. The nature and morphology of IM particles exert significant effects on the rate of fatigue crack growth and fracture toughness properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号