首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrous oxide emissions from agricultural soils   总被引:8,自引:0,他引:8  
This paper addresses three topics related to N2O emissions from agricultural soils. First, an assessment of the current knowledge of N2O emissions from agricultural soils and the role of agricultural systems in the global N2O are discussed. Secondly, a critique on the methodology presented in the OECD/OCDE (1991) program on national inventories of N2O is presented. Finally, technical options for controlling N2O emissions from agricultural fields are discussed.The amount of N2O derived from nitrogen applied to agricultural soils from atmospheric deposition, mineral N fertilizer, animal wastes or biologically fixed N, is not accurately known. It is estimated that the world-wide N2O emitteddirectly from agricultural fields as a result of the deposition of all the above nitrogen sources is 2–3 Tg N annually. This amounts to 20–30% of the total N2O emitted annually from the earth's surface. An unknown, but probably significant, amount of N2O is generated indirectly in on and off farm activities associated with food production and consumption.Management options to limitdirect N2O emissions from N-fertilized soils should emphasize improving N-use efficiency. Such management options include managing irrigation frequency, timing and quantity; applying N only to meet crop demand through multiple applications during the growing season or by using controlled release fertilizers; applying sufficient N only to meet crop needs; or using nitrification inhibitors. Most of these options have not been field tested. Agricultural management practices may not appreciably affect indirect N2O emissions.  相似文献   

2.
Nitrous oxide (N2O) emission from farmland is a concern for both environmental quality and agricultural productivity. Field experiments were conducted in 1996–1997 to assess soil N2O emissions as affected by timing of N fertilizer application and straw/tillage practices for crop production under irrigation in southern Alberta. The crops were soft wheat (Triticum aestivumL.) in 1996 and canola (Brassica napusL.) in 1997. Nitrous oxide flux from soil was measured using a vented chamber technique and calculated from the increase in concentration with time. Nitrous oxide fluxes for all treatments varied greatly during the year, with the greatest fluxes occurring in association with freeze-thaw events during March and April. Emissions were greater when N fertilizer (100 kg N ha−1) was applied in the fall compared to spring application. Straw removal at harvest in the fall increased N2O emissions when N fertilizer was applied in the fall, but decreased emissions when no fertilizer was applied. Fall plowing also increased N2O emissions compared to spring plowing or direct seeding. The study showed that N2O emissions may be minimized by applying N fertilizer in spring, retaining straw, and incorporating it in spring. The estimates of regional N2O emissions based on a fixed proportion of applied N may be tenuous since N2O emission varied widely depending on straw and fertilizer management practices. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The closed chamber method was used to measure the N2O and CH4 emissions from rice, maize, soybean and spring wheat fields in Northeast China. Rice field almost did not emit or deposit N2O in total during flooding period, whereas N2O was substantially emitted during non-flooding period. The annual emission amount of N2O was 1.70 kg N2O ha-1, but that in flooding period was only 0.04 kg N2O ha-1. Daily average and seasonal total CH4 emission in rice field were 0.07 and 7.40 g CH4m-2, respectively. A trade-off between N2O and CH4 emissions from rice field was found. The growth of Azolla in rice field greatly stimulated both N2O and CH4 emissions. Total N2O emissions (270 days) from maize and soybean fields were 7.10 and 3.12 kg N2O ha-1, respectively. The sink function of the uplands monitored as the atmospheric CH4 was not significant. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Rice-flooding fallow, rice-wheat, and double rice-wheat systems were adopted in pot experiment in an annual rotation to investigate the effects of cropping system on N2O emission from rice-based cropping systems. The annual N2O emission from the rice-wheat and the double rice-wheat cropping systems were 4.3 kg N ha–1 and 3.9 kg N ha–1, respectively, higher than that from rice-flooding fallow cropping system, 1.4 kg N ha–1. The average N2O flux was 115 and 118 g N m–2 h–1 for rice season in rice-wheat system and early rice season in double rice-wheat system, respectively, 68.6 and 35.3 g N m–2 h–1 for the late rice season in double rice-wheat system and rice season in rice-flooding fallow, respectively, and only 3.1–5.3 g N m–2 h–1 for winter wheat or flooding fallow season. Temporal variations of N2O emission during rice growing seasons differed and high N2O emission occurred when soil conditions changed from upland crop to flooded rice.  相似文献   

5.
Nitrous oxide (N2O) flux simulations by four models were compared with year-round field measurements from five temperate agricultural sites in three countries. The field sites included an unfertilized, semi-arid rangeland with low N2O fluxes in eastern Colorado, USA; two fertilizer treatments (urea and nitrate) on a fertilized grass ley cut for silage in Scotland; and two fertilized, cultivated crop fields in Germany where N2O loss during the winter was quite high. The models used were daily trace gas versions of the CENTURY model, DNDC, ExpertN, and the NASA-Ames version of the CASA model. These models included similar components (soil physics, decomposition, plant growth, and nitrogen transformations), but in some cases used very different algorithms for these processes. All models generated similar results for the general cycling of nitrogen through the agro-ecosystems, but simulated nitrogen trace gas fluxes were quite different. In most cases the simulated N2O fluxes were within a factor of about 2 of the observed annual fluxes, but even when models produced similar N2O fluxes they often produced very different estimates of gaseous N loss as nitric oxide (NO), dinitrogen (N2), and ammonia (NH3). Accurate simulation of soil moisture appears to be a key requirement for reliable simulation of N2O emissions. All models simulated the general pattern of low background fluxes with high fluxes following fertilization at the Scottish sites, but they could not (or were not designed to) accurately capture the observed effects of different fertilizer types on N2O flux. None of the models were able to reliably generate large pulses of N2O during brief winter thaws that were observed at the two German sites. All models except DNDC simulated very low N2O fluxes for the dry site in Colorado. The US Trace Gas Network (TRAGNET) has provided a mechanism for this model and site intercomparison. Additional intercomparisons are needed with these and other models and additional data sets; these should include both tropical agro-ecosystems and new agricultural management techniques designed for sustainability.  相似文献   

6.
A micrometeorological mass balance technique was used to quantify the N2O flux from a solid dairy manure pile under field conditions. Flux was determined using time-averaged measurements of wind speed, and nitrous oxide concentration using a tunable diode laser trace gas analyzer. A total of 66 hourly flux averages were collected and values were never lower than 200 ng N2O-N m–2 s–1. The mean hourly N2O flux was 4865 ng N2O-N m–2 s–1 (0.42 g N m–2 day–1), which is of the same order of magnitude, albeit higher, as previously observed for a similar solid pig manure storage.  相似文献   

7.
The purpose of the current paper is to estimate future trends (up to the year 2050) in the global geographical distribution of nitrous oxide (N2O) emissions in rivers, estuaries, and continental shelf regions due to biological processes, particularly as they are affected by anthropogenic nitrogen (N) inputs, and to compare these to 1990 emissions. The methodology used is from Seitzinger and Kroeze (1998) who estimated 1990 emissions assuming that N2O production in these systems is related to nitrification and denitrification. Nitrification and denitrification in rivers and estuaries were related to external inputs of nitrogen to those systems. The model results indicate that between 1990 and 2050 the dissolved inorganic nitrogen (DIN) export by rivers more than doubles to 47.2 Tg N in 2050. This increase results from a growing world population, associated with increases in fertilizer use and atmospheric deposition of nitrogen oxides (NOy). By 2050, 90% of river DIN export can be considered anthropogenic. N2O emissions from rivers, estuaries and continental shelves are calculated to amount to 4.9 (1.3 – 13.0) Tg N in 2050, of which two-thirds are from rivers. Aquatic emissions of N2O are calculated to increase faster than DIN export rates: between 1990 and 2050, estuarine and river emissions increase by a factor of 3 and 4, respectively. Emissions from continental shelves, on the other hand, are calculated to increase by only 12.5%.  相似文献   

8.
A field experiment was conducted to investigate the effects of winter management and N fertilization on N2O emission from a double rice-based cropping system. A rice field was either cropped with milk vetch (plot V) or left fallow (plot F) during the winter between rice crops. The milk vetch was incorporated in situ when the plot was prepared for rice transplanting. Then the plots V and F were divided into two sub-plots, which were then fertilized with 276 kg urea-N ha–1 (referred to as plot VN and plot FN) or not fertilized (referred to as plot VU and plot FU). N2O emission was measured periodically during the winter season and double rice growing seasons. The average N2O flux was 11.0 and 18.1 g N m–2 h–1 for plot V and plot F, respectively, during winter season. During the early rice growing period, N2O emission from plot VN averaged 167 g N m–2 h–1, which was eight- to fifteen-fold higher than that from the other three treatments (17.8, 21.0 and 10.8 g N m–2 h–1 for plots VU, FN, and FU, respectively). During the late rice growing period, the mean N2O flux was 14.5, 11.1, 12.1 and 9.9 g N m–2 h–1 for plots VN, VU, FN and FU, respectively. The annual N2O emission rates from green manure-double rice and fallow-double rice cropping systems were 3.6 kg N ha–1 and 1.3 kg N ha–1, respectively, with synthetic N fertilizer, and were 0.99 kg N ha–1 and 1.12 kg N ha–1, respectively, without synthetic N fertilizer. Generally, both green manure N and synthetic fertilizer N contribute to N2O emission during double rice season.  相似文献   

9.
Ammonia and nitrous oxide emissions from grass and alfalfa mulches   总被引:2,自引:0,他引:2  
Ammonia (NH3) and nitrous oxide (N-2O) emissions were measured in the field for three months from three different herbage mulches and from bare soil, used as a control. The mulches were grass with a low N-content (1.15% N in DM), grass with a high N-content (2.12% N in DM) and alfalfa with a high N-content (4.33% N in DM). NH3 volatilization was measured using a micrometeorological technique. N-2O emissions were measured using closed chambers. NH3 and N-2O emissions were found to be much higher from the N-rich mulches than from the low-N grass and bare soil, which did not differ significantly. Volatilization losses of NH3 and N-2O occurred mainly during the first month after applying the herbage and were highest from wet material shortly after a rain. The extent of NH3-N losses was difficult to estimate, due to the low frequency of measurements and some problems with the denuder technique, used on the first occasions of measurements. Nevertheless, the results indicate that NH3-N losses from herbage mulch rich in N can be substantial. Estimated losses of NH3-N ranged from the equivalent of 17% of the applied N for alfalfa to 39% for high-N grass. These losses not only represent a reduction in the fertilizer value of the mulch, but also contribute appreciably to atmospheric pollution. The estimated loss of N-2O-N during the measurement period amounted to 1% of the applied N in the N-rich materials, which is equivalent to at least 13 kg N-2O-N ha-1 lost from alfalfa and 6 kg ha-1 lost from high-N grass. These emission values greatly exceed the 0.2 kg N-2O-N ha-1 released from bare soil, and thus contribute to greenhouse gas emissions.  相似文献   

10.
An assessment of N loss from agricultural fields to the environment in China   总被引:48,自引:1,他引:48  
Using the 1997 IPCC Guidelines for National Greenhouse Gas Inventory Methodology, and statistical data from the China Agricultural Yearbook, we estimated that the direct N2O emission from agricultural fields in China in 1990 was 0.282 Tg N. Based on micro-meteorological field measurement of NH3 volatilization from agricultural fields in different regions and under different cropping systems, the total NH3 volatilization from agricultural fields in China in 1990 was calculated to be 1.80 Tg N, which accounted for 11% of the applied synthetic fertilizer N. Ammonia volatilization from agricultural soil was related to the cropping system and the form of N fertilizer. Ammonia volatilization from paddy fields was higher than that from uplands, and NH4HCO3 had a higher potential of NH3 volatilization than urea. N loss through leaching from uplands in north China accounted for 0.5–4.2% of the applied synthetic fertilizer N. In south China, the leaching of applied N and soil N from paddy fields ranged from 6.75 to 27.0 kg N ha-1 yr-1, while N runoff was between 2.45 and 19.0 kg N ha-1 yr-1.  相似文献   

11.
Nitrous oxide (N2O) emissions and denitrification losses from an irrigated sandy loam soil amended with composted municipal solid waste (MSW), sheep manure (SM), surface applied pig slurry (SPS), incorporated pig slurry (IPS) or urea (U) were studied under Mediterranean conditions. We quantified emissions, in both the presence and absence of maize and N2O production, via denitrification and nitrification pathways using varying concentrations of acetylene. Discounting the N2O lost in the Control, the percentages of N2O lost in relation to the total N applied were greater for urea (1.80%) than for MSW (0.50%), SM (0.46%), SPS (1.02%) or IPS (1.27%). In general, plots treated with organic fertilisers emitted higher amounts of N2O when under maize than bare soil plots. On the other hand, greater denitrification losses were also recorded for plots in the absence of plants (between 9.7 and 29.3 kg N2O-N ha−1) than for areas with plants (between 7.1 and 24.1 kg N2O-N ha−1). The proportion of N2O produced via denitrification was greater from fertiliser treatments than for the controls and also greater without plants (between 66 and 91 % of the N2O emitted) than with plants (between 48 and 81%).  相似文献   

12.
Data on the emissions of oxides of nitrogen from the soil during the early part of the wet season are reported for nutrient-rich and nutrient-poor sandy soils at Nylsvley, South Africa. The emissions of NOx and N2O following the first wetting event of the season are elevated relative to subsequent events. The observed high emission rates (76 ng N-NO m-2 s-1) are partially attributed to the sandiness of the soil, which permits NO to diffuse out of the soil rapidly. The pulse of high emissions following wetting is maintained for approximately 72 hours, thereafter continuing at around 20 ng NO m-2 s-1 while the soil remains moist. The initial pulse is suggested to be due to the accumulation of a substrate pool during the dry period, coupled with an inability of plants and microbes to use it effectively during the first few days after wetting. There were no significant differences in the peak or subsequent emission rates for either NO or N2O between two sites of differing nitrogen mineralisation potentials. N2O emissions averaged 8% of NOx emissions. The enhanced emissions of NOx which follow the first wetting after a prolonged dry period do not make a very large contribution to the annual gaseous N emission budget, but could be a significant contributor to the high tropospheric ozone levels observed over southern Africa in springtime.  相似文献   

13.
N2O and NO fluxes from grassland soil after the application of cattle and swine excreta were measured by a closed chamber method in the autumn and winter of 1994 to 1995. Fresh excrement and urine were spread on the grassland experimental plots and these gas fluxes were measured one or two times a week. In the autumn experiment, N2O and NO fluxes began to increase several days after the application, the NO flux reaching a maximum after 16 days. In the winter experiment, N2O and NO fluxes began to increase 45 days after the application and reached a maximum after 80 days. Nitrous oxide flux was influenced by soil water content, high water content leading to high N2O flux. The ratio of NO-N/N2O-N in the flux was in the range of 1.1 to 13.7, and negatively correlated to the soil water content. In the winter experiment, the total emission rate of NO was 0.48% and 0.45% of total nitrogen in the applied cattle and swine excreta, respectively. The total emission rate of N2O was 0.085% and 0.098% in the applied cattle and swine excreta, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Hao Liu  Bernard M. Gibbs 《Fuel》2002,81(3):271-280
A model for NO and N2O emissions from biomass-fired circulating fluidized bed (CFB) combustors has been developed and evaluated in this study. All the model parameters were chosen for a typical woody biomass-pinewood chips. Both drying and devolatilization of biomass particles were modelled with limited rates, which were selected from the literature based on woody biomass fuels. The partition of fuel-nitrogen between volatiles and char was also specifically chosen for pinewood based on available experimental data from the literature. Volatile nitrogen was assumed to consist of NH3, HCN and N2 with the distribution between three species as input parameters to the model. Twenty-five homogenous and heterogeneous global chemical reactions were included in the model, of which 20 reactions represents the global fuel-nitrogen reactions. Both gaseous and solid phase were assumed to be in plug flow. The model has been applied to the modelling of a 12 MWth CFB boiler. The predicted N2O emissions were always less than 5 ppmv for pinewood combustion, which was consistent with the experimental results. The predicted NO emissions increased with the total excess air of the riser and the fuel-N content while the predicted percentage conversion of fuel-N to NO decreased with increasing fuel-N content. The NO emissions were also predicted to decrease with increasing primary zone stoichiometry. These predictions agree with the experimental results. The predicted NO emissions decreased slightly with increasing bed temperature, whereas experiments showed that NO emissions slightly increased with bed temperature for birch chips combustion and did not change with bed temperature for fir chips combustion. Sensitivity analyses reveal that the reaction between NO and char is the key reaction to determine the NO emissions.  相似文献   

15.
A pot trial and a field experiment were conducted to study the effect of timing of application of nitrification inhibitor dicyandiamide (DCD) on N2O and CH4 emissions from rice paddy soil. Four treatments including Treatment CK1, DCD-1 (application of DCD with basal fertilizer), DCD-2 (DCD with tillering fertilizer) and DCD-3 (DCD with panicle initiation fertilizer), were designed and implemented in pot experiment. Total N2O and CH4 emissions from DCD-treated soils were decreased profoundly when compared with that from urea alone (P < 0.05). Application of DCD together with basal fertilizer, tillering fertilizer and panicle initiation fertilizer reduced N2O emission by 8, 30 and 2%, respectively, while those for CH4 were 21, 8 and 1%. The field experiment with four treatments was carried out subsequently, and a kind of urease inhibitor hydroquinone (HQ) was also incorporated with DCD simultaneously. The combined use of HQ and DCD with basal fertilizer, tillering fertilizer and panicle initiation fertilizer decreased N2O emissions by 24, 56 and 17%, respectively, while those for CH4 were 35, 19 and 12%. N2O emission was effectively reduced by the inhibitor(s) applied with tillering fertilizer before midseason aeration, while CH4 emission was effectively decreased by the combined use of inhibitor(s) with basal fertilizer before rice transplanting. Furthermore, an increase in rice yield and a reduction of total global warming potential (GWP) of CH4 and N2O could be achieved by using inhibitor(s) in rice paddy field.  相似文献   

16.
Greenhouse gases (CO2, CH4 and N2O) are emitted during livestock manure handling, including composting, storage and land application. However, published data on emission rates of these gases during storage are sparse. In this study, the levels of GHG emissions and N levels during compost storage were investigated. The compost materials were produced by composting livestock manure for 133 d with 0, 10, 20 and 30% phosphogypsum (PG) or 10, 20 and 30% sand amendment. These compost materials were then stored on a clay pad for 233 d. Results from this study indicated that TN content did not change but mineral N content increased significantly during the 233 d storage for all treatments. The higher mineral N content in compost increases its agronomic value. There were only trace amounts of CH4 and N2O emissions. The C loss during storage was mainly as CO2 and accounted for about 2.9 to 10% of total C initially in the compost. This information is vital to livestock manure life cycle analysis, and can be used to develop best manure management strategies that reduce GHG emissions from livestock production. The LRC Contribution No. 387-06006.  相似文献   

17.
Lowland rice production is currently facing serious water shortages in numerous Asian countries. In the North China Plain water limitations are severe. Water-saving rice production techniques are therefore increasingly searched for. Here we present the first study of trace gas emissions from a water-saving rice production system where soils are mulched and are kept close to field capacity in order to compare their contribution to global warming with traditional paddy rice. In a two-year field experiment close to Beijing, CH4 and N2O fluxes were monitored in two forms of the Ground Cover Rice Production System (GCRPS) and in traditional paddy fields using closed chambers. With paddy rice the observed CH4 emissions were very low, about 0.3 g CH4 m−2 a−1 in 2001 and about 1 g CH4 m−2 a−1 in 2002. In GCRPS, the CH4 emissions were negligible. N2O fluxes in GCRPS were similar, 0.5 to 0.6 g N2O m−2 a−1 in 2001 and 2002, and emission peaks mainly followed fertilizer applications. In paddy rice, N2O fluxes were unexpectedly low throughout the year 2001 (0.03 g N2O m−2 a−1), and in 2002 larger emissions occurred during the drainage period. So with 0.4 g N2O m−2 a−1 the cumulative flux was similar to emissions in GCRPS. Total CO2 equivalent fluxes calculated according to IPCC methodology were tenfold higher in GCRPS compared to paddy in 2001. In 2002, fluxes from both systems were similar with 175 and 141 g CO2 equivalents m−2 a−1 from GCRPS and paddy. Burkhard Sattelmacher deceased.  相似文献   

18.
New hydrotalcite-like materials containing magnesium, chromium, and/or iron were synthesized by the coprecipitation method and then thermally transformed into mixed metal oxides. The obtained catalysts were characterized with respect to chemical composition (XRF), structural (XRD, Mössbauer spectroscopy) and textural (BET) properties. The catalytic performance of the hydrotalcite-derived oxides was tested in the N2O decomposition and the N2O reduction by ethylbenzene. An influence of N2O/ethylbenzene molar ratio on the process selectivity was studied. The relationship between catalytic performance and structure of catalysts was discussed.  相似文献   

19.
The fate of nitrogen from incorporated cover crop and green manure residues   总被引:1,自引:0,他引:1  
Nitrogen retention and release following the incorporation of cover crops and green manures were examined in field trials in NE Scotland. These treatments reduced the amounts of nitrate-N by between 10–20 kg ha-1 thereby lowering the potential for leaching and gaseous N losses. However, uptake of N by overwintering crops was low, reflecting the short day-lengths and low soil temperatures associated with this part of Britain. Vegetation that had regenerated naturally was as effective as sown cover crops at taking up N over winter and in returning N to the soil for the following crop. Incorporation of residues generally resulted in lower mineralisation rates and reduced N2O emissions than the cultivation of bare ground, indicating a temporary immobilisation of soil N following incorporation. Emissions from incorporated cover crops ranged from 23–44 g N2O-N ha-1 over 19 days, compared with 61 g N2O-N ha-1 emitted from bare ground. Emissions from incorporated green manures ranged from 409–580 g N2O-N ha-1 over 53 days with 462 g N2O-N ha-1 emitted from bare ground. Significant positive correlations between N2O and soil NO3 - after incorporation (r=0.8–0.9; P<0.001 and r=0.1–0.4; P<0.05 for cover crops and green manures, respectively) suggest that this N2O was mainly produced during nitrification. There was no significant effect of either cover cropping or green manuring on the N content or yield of the subsequent oats crop, suggesting that N was not sufficiently limiting in this soil for any benefits to become apparent immediately. However, benefits of increased sustainability as a result of increased organic matter concentrations may be seen in long-term organic rotations, and such systems warrant investigation.  相似文献   

20.
The zero tillage (ZT) system is used in a large area (>24 Mha) of crop production in Brazil. This management system can contribute to soil C sequestration, but many studies in other countries have registered greater nitrous oxide emissions under ZT compared to conventional tillage (CT), which may reduce greenhouse gas mitigation benefits. The aim of this study was to estimate the emission of N2O from cropping systems under conventional and zero tillage in an 18-year-old experiment conducted on a Rhodic Ferralsol in the South of Brazil. Fluxes of N2O were measured over two years using static-closed chambers in the two tillage systems with three crop rotations. Soil water filled pore space (%WFPS) and soil mineral N were monitored along with rainfall and air temperature. Estimates of N2O emissions were obtained by integrating the fluxes with time and also by applying the IPCC direct emission factor (EF1 = 1%) to the amounts of N added as fertilisers and returned as crop residues. Fluxes of N2O were relatively low, apart from a short period at the beginning of measurements. No relationship between N2O fluxes and %WFPS or mineral N were observed. Nitrous oxide emissions were not influenced either by tillage system or crop rotation. For the crop rotation receiving high rates of N fertiliser in the second year, field-measured N2O emissions were significantly underestimated by the IPCC emission factor 1 (EF1). For the other treatments measured N2O emissions fell within the EF1 uncertainty range, but always considerably lower than the EF1 estimate, which suggests IPCC EF1 overestimates true N2O emissions for the Ferralsol under evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号