首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Excellent luminescence properties of ZnO/ZnS nanocrystallites prepared using simple wet chemical approach at room temperature have been reported. ZnS coating on the surface of ZnO nanocrystallites enhanced the green emission (around 500 nm) by a factor of 2. The intensity of the blue emission around 450 nm of ZnO/ZnS nanocrystallites is observed to be as high as three times the emission intensity of pure ZnO nanocrystallites. A further overall increase by a factor of ∼2.5 has also been observed in the intensity of wide blue-green emission when the sample was prepared onto grating compared to that of the samples prepared onto uncoated as well as gold coated quartz. The enhanced emission is thought to be due to plasmon assisted electromagnetic field enhancement near nanocrystallites-metal interface. This is supported by power dependent photoluminescence measurements. The strong enhanced blue-green emission covering a wide spectral range of ∼375-650 nm signifies potential optoelectronic applications in near UV and VIS wavelength regimes.  相似文献   

2.
A novel nanophotonic method for enhancing the two-photon fluorescence signal of a fluorophore is presented. It utilizes the second harmonic (SH) of the exciting light generated by noble metal nanospheres in whose near-field the dye molecules are placed, to further enhance the dye's fluorescence signal in addition to the usual metal-enhanced fluorescence phenomenon. This method enables demonstration, for the first time, of two-photon fluorescence enhancement inside a biological system, namely live cells. A multishell hydrogel nanoparticle containing a silver core, a protective citrate capping, which serves also as an excitation quenching inhibitor spacer, a pH indicator dye shell, and a polyacrylamide cladding are employed. Utilizing this technique, an enhancement of up to 20 times in the two-photon fluorescence of the indicator dye is observed. Although a significant portion of the enhanced fluorescence signal is due to one-photon processes accompanying the SH generation of the exciting light, this method preserves all the advantages of infrared-excited, two-photon microscopy: enhanced penetration depth, localized excitation, low photobleaching, low autofluorescence, and low cellular damage.  相似文献   

3.
We have measured UV fluorescence excited through two-photon absorption from native chicken tissue, using 600-nm, 500-fs pulses from a R6G dye laser. The observed emission signal was found to depend quadratically on the excitation intensity. The two-photon excitation-induced fluorescence spectrum is attributed to tryptophan residues in proteins.  相似文献   

4.
This paper reports the demonstration of efficient single molecule detection in flow cytometry by two-photon fluorescence excitation. We have used two-photon excitation (TPE) to detect single DNA fragments as small as 383 base pairs (bp) labeled with the intercalating dye, POPO-1, at a dye:nucleotide ratio of 1:5. TPE of the dye-DNA complexes was accomplished using a mode-locked, 120 fs pulse width Ti:sapphire laser operating at 810 nm. POPO-1 labeled DNA fragments of 1.1 kilobase pairs (kbp) and larger were sequentially detected in our flow cytometry system with a detection efficiency of nearly 100%. The detection efficiency for the 383 bp DNA fragments was approximately 75%. We also demonstrate the ability to distinguish between different sized DNA fragments in a mixture by their individual fluorescence burst sizes by TPE. These studies indicate that using TPE for single molecule flow cytometry experiments lowers the intensity of the background radiation by approximately an order of magnitude compared to one-photon excitation, due to the large separation between the excitation and emission wavelengths in TPE.  相似文献   

5.
The photoluminescence (PL) from rhodamine (RHO6G) dye dispersed in ethanol has been studied in the presence of different amounts of citrate stabilized silver nanoparticles of size, ∼10 nm. Enhancement as well as quenching of luminescence intensity has been observed and it was found that luminescence intensity can be tuned by adding various amounts of silver nanoparticles to the RHO6G dye dispersion. The luminescence spectra of dye consist of two peaks at 440 nm and 550 nm. Peak at 440 nm shows an enhancement in intensity at all the concentrations of added silver nanoparticles with the maximum intensity for dye with 0.25 ml silver nanoparticles (82% enhancement in the luminescence intensity). PL intensity of intense peak at 550 nm of dye molecules was found to be quenched in presence of silver nanoparticles and maximum quenching was found to be 41% for the dye with 1 ml silver nanoparticles. However, for lowest concentration of silver nanoparticles viz. (0.01 ml), enhancement in intensity was observed (13% enhancement than the dye molecules). The quenching as well as enhancement in the intensity can be understood by considering the possibility of three different phenomena. It has been reported earlier that when metal nanoparticles are in close proximity to the fluorophores, quenching of luminescence occurs, whereas when metal nanoparticles are located at certain distance, enhancement in luminescence is observed. This effect has been explained by coupling of surface plasmon resonance from metal nanoparticles with fluorophore, resulting in the increase of excitation and emission rate of the fluorophore in the localized electromagnetic field. The quenching and enhancement of luminescence intensity of the dye molecules can also be explained as the transfer of electrons from dye to the silver nanoparticles and to an extent it can be attributed to the aggregation of dye molecules upon addition of silver nanoparticles.  相似文献   

6.
High quality zinc oxide (ZnO) nanowires were grown on n-type Si (100) using vapor-liquid-solid process. We obtained the photoluminescence spectra of ZnO nanowires based on nonlinear optical process using an ultrashort wavelength femtosecond laser as a pumping source. The spectra shows the second harmonic generation phenomenon, as well as the exciton-exciton collision peak at 388 nm and the green emission peak at 515 nm caused by oxygen vacancy. A laser emission peak near 392 nm was observed when pump intensity surpassed 52 mJ/cm2 and a sharp peak about 0.5 nm wide emerged when the energy intensity reached 700 mJ/cm2. We attribute this excitation process to a two-photon absorption process enhanced by Rabi oscillation.  相似文献   

7.
The interaction of the surface plasmons of gold nanoparticles on silicon nanowires with fluorophores, lanthanide ions (praseodymium ions, Pr3+, neodymium ions Nd3+, holmium ions Ho3+, and erbium ions Er3+) was investigated. In the presence of Au/Si nanomaterials, the fluorescence peaks were significantly enhanced, which resulted in about 2 orders of magnitude enhancement. The photoluminescence studies revealed that the enhanced fluorescence originates from the local field enhancement around Ln3+ ions, caused by the electronic plasmons resonance of the gold nanoparticles. Results showed that this Au/Si nanostructure had larger enhancement factor than that caused by unsupported Au nanoparticles. These results might be explained by the local field overlap originated from the closed and fixed gold nanoparticles on silicon nanowires.  相似文献   

8.
A strongly confined and enhanced electromagnetic (EM) field due to gap‐plasmon resonance offers a promising pathway for ultrasensitive molecular detections. However, the maximum enhanced portion of the EM field is commonly concentrated within the dielectric gap medium that is inaccessible to external substances, making it extremely challenging for achieving single‐molecular level detection sensitivity. Here, a new family of plasmonic nanostructure created through a unique process using nanoimprint lithography is introduced, which enables the precise tailoring of the gap plasmons to realize the enhanced field spilling to free space. The nanostructure features arrays of physically contacted nanofinger‐pairs with a 2 nm tetrahedral amorphous carbon (ta‐C) film as an ultrasmall dielectric gap. The high tunneling barrier offered by ta‐C film due to its low electron affinity makes an ultranarrow gap and high enhancement factor possible at the same time. Additionally, its high electric permittivity leads to field redistribution and an abrupt increase across the ta‐C/air boundary and thus extensive spill‐out of the coupled EM field from the gap region with field enhancement in free space of over 103. The multitude of benefits deriving from the unique nanostructure hence allows extremely high detection sensitivity at the single‐molecular level to be realized as demonstrated through bianalyte surface‐enhanced Raman scattering measurement.  相似文献   

9.
Enhancing the fluorescence intensity of colloidal quantum dots (QDs) in case of color‐conversion type QD light‐emitting devices (LEDs) is very significant due to the large loss of QDs and their quantum yields during fabrication processes, such as patterning and spin‐coating, and can therefore improve cost‐effectiveness. Understanding the enhancement process is crucial for the design of metallic nanostructure substrates for enhancing the fluorescence of colloidal QDs. In this work, improved color conversion of colloidal green and red QDs coupled with aluminum (Al) and silver (Ag) nanodisk (ND) arrays designed by in‐depth systematic finite‐difference time domain simulations of excitation, spontaneous emission, and quantum efficiency enhancement is reported. Calculated results of the overall photoluminescence enhancement factor in the substrate of 500 × 500 µm2 size are 2.37‐fold and 2.82‐fold for Al ND‐green QD and Ag ND‐red QD structures, respectively. Experimental results are in good agreement, showing 2.26‐fold and 2.66‐fold enhancements for Al ND and Ag ND structures. Possible uses of plasmonics in cases such as white LED and total color conversion for possible display applications are discussed. The theoretical treatments and experiments shown in this work are a proof of principle for future studies of plasmonic enhancement of various light‐emitting materials.  相似文献   

10.
Discontinuous plasmonic‐3D photonic crystal hybrid structures are fabricated in order to evaluate the coupling effect of surface plasmon resonance and the photonic stop band. The nanostructures are prepared by silver sputtering deposition on top of hydrophobic 3D photonic crystals. The localized surface plasmon resonance of the nanostructure has a symbiotic relationship with the 3D photonic stop band, leading to highly tunable characteristics. Fluorescence enhancements of conjugated polymer and quantum dot based on these hybrid structures are studied. The maximum fluorescence enhancement for the conjugated polymer of poly(5‐methoxy‐2‐(3‐sulfopropoxy)‐1,4‐phenylenevinylene) potassium salt by a factor of 87 is achieved as compared with that on a glass substrate due to the enhanced near‐field from the discontinuous plasmonic structures, strong scattering effects from rough metal surface with photonic stop band, and accelerated decay rates from metal‐coupled excited state of the fluorophore. It is demonstrated that the enhancement induced by the hybrid structures has a larger effective distance (optimum thickness ≈130 nm) than conventional plasmonic systems. It is expected that this approach has tremendous potential in the field of sensors, fluorescence‐imaging, and optoelectronic applications.  相似文献   

11.
The average plasmonic enhancement of Au nanoshell (Au-NS) coated by a molecules-doped silica layer (Au-NS@SiO2) on molecular fluorescence is studied theoretically to estimate the overall performance of a large number of Au-NS@SiO2. Using Mie theory and dyadic Green's functions, analytical solutions of the excitation rate and the apparent quantum yield are obtained to calculate the enhancement factor of Au-NS@SiO2 on the fluorescence of a molecule with a specific orientation and location at a specific excitation wavelength lambda ex and an emission wavelength lambda em. Subsequently, the average enhancement factor (AEF) is calculated by averaging all possible orientations and locations of the molecule. For example, AEF of Au-NS@SiO2 (a3 = 50 nm t2 = 15 nm, t1 = 25 nm) is 4.544 for a NIR fluorescence at lambda ex = 780 nm and lambda em = 820 nm. Our results show that Au-NS is a broadband enhancer for NIR fluorescence; the bandwidth and the peak depend on the core size and the thickness of Au shell.  相似文献   

12.
《Optical Materials》2014,36(12):2535-2539
Two-photon absorption and two-photon excitation fluorescence of salicylaldehyde azine 1 crystals were investigated. It was observed an intense visible fluorescence when this material was excited with a laser tuned at the near infrared region. Varying the laser intensity we characterized this phenomenon as a simultaneous two-photon laser absorption process. Using open aperture Z-scan measurements we characterized this two-photon absorption phenomenon and measured the value of the two-photon absorption cross-section of this molecule to be equal to 87 GM. Our results indicate that this is a promising organic material aiming nonlinear photonics applications.  相似文献   

13.
The general behavior of two-photon absorption-enhanced refractive-index change in a third-order nonlinear optical medium is briefly described. The nonlinear medium was the solution of a new dye, trans-4-[p-(N-hydroxyethyl-N-methylamino)styryl]-N-methyl pyridinium iodide (ASPI) in dimethyl sulfoxide as the solvent, that was poured into a 20-cm-long quartz hollow fiber of 100-mum internal diameter. This dye solution has a strong two-photon absorption and subsequent upconversion fluorescence emission when excited with 1064-nm laser radiation. When the input peak intensity reached 500-1500-MW/cm(2) levels, obvious changes in beam profiles of the output IR laser beam were observed due to a self-focusing or self-trapping process occurring inside the fiber system. As a result of this process, highly directional frequency-upconverted superradiant lasing output was obtained with a beam size ~5 times smaller than that of a linearly transmitted He-Ne probe laser beam. The demonstrated mechanism can be useful for fiber laser-amplifier and fiber-integrated optics devices.  相似文献   

14.
Enhanced fluorescence emission intensity from fluorescein was observed on glass slides covered with thin films of silver nanoparticles using a confocal laser-scanning microscope. The silver nanoparticle film increased the emission intensity of fluorescein by an average of at least three-fold in the area studied. Statistics are given on the enhancement of individual areas of the silver particle film with a resolution of approximately 210 nm. A histogram of intensity values indicates that the enhancement appears to occur without distinct subpopulations, with the exception that very high intensity subpopulations may occur but could not be resolved. Spatial features with dimensions near or smaller than the resolution limit of the confocal microscope, on the silver nanoparticle slide that enhanced the emission of fluorescein, were found using autocorrelation functions. These spatial features are of the same size as those found from the emission of slides containing silver nanoparticles only. These spatial features do not appear in control slides containing fluorescein without any silver nanoparticles. No long-range spatial ordering of the fluorescence enhancement on chemcially deposited silver nanoparticle slides was detected.  相似文献   

15.
Fu L  Gan X  Gu M 《Applied optics》2005,44(34):7270-7274
We report on the experimental investigation into the characterization of two-photon fluorescence microscopy based on the separation distance of a single-mode optical fiber coupler and a gradient-index (GRIN) rod lens. The collected two-photon fluorescence signal exhibits a maximum intensity at a defined separation distance (gap length) where the increasing effective excitation numerical aperture is balanced by the decreasing confocal emission collection. A maximum signal is found at gap lengths of approximately 2, 1.25, and 1.75 mm for GRIN lenses with pitches of 0.23, 0.25, and 0.29 wavelength at 830 nm. The maximum two-photon fluorescence signal collected corresponds to a threefold reduction of axial resolution (38.5 microm at 1.25 mm), compared with the maximum resolution (11.6 microm at 5.5 mm), as shown by the three-dimensional imaging of 10 microm beads. These results demonstrate an intrinsic trade-off between signal collection and axial resolution.  相似文献   

16.
Fluorescence enhancement achieved by functionalized microstructures made by two-photon polymerization (TPP) is reported for the first time. Microstructures of various shapes made of SU-8 photoresist were prepared and coated with gold nanoparticles (NP) of 80 nm. Localized fluorescence enhancement was demonstrated by microstructures equipped with tips of sub-micron dimensions. The enhancement was realized by positioning the NP-coated structures over fluorescent protein layers. Two fluorophores with their absorption in the red and in the green region of the VIS spectrum were used. Laser scanning confocal microscopy was used to quantify the enhancement. The enhancement factor was as high as 6 in areas of several square-micrometers and more than 3 in the case of local enhancement, comparable with literature values for similar nanoparticles. The structured pattern of the observed fluorescence intensity indicates a classic enhancement mechanism realized by standing waves over reflecting surfaces. With further development mobile microtools made by TPP and functionalized by metal NPs can be actuated by optical tweezers and position to any fluorescent micro-object, such as single cells to realize localized, targeted fluorescence enhancement.  相似文献   

17.
Reeves M  Musculus M  Farrell P 《Applied optics》1998,37(28):6627-6635
We describe a confocal two-photon laser-induced fluorescence scheme for the detection of gaseous NO. Excitation from a simple YAG-pumped Coumarin 450 dye system near 452.6 nm was used to promote the two-photon NO(A (2)?(+), nu? = 0 ? X (2)?, nu? = 0) transition in the gamma(0, 0) band. Subsequent fluorescence detection in the range 200-300 nm permitted almost total rejection of elastic and geometric scatter of laser radiation for excellent signal/noise ratio characteristics. The goal of the research was to apply NO fluorescence to a relatively realistic limited optical access combustion environment. A confocal optical arrangement was demonstrated for single-point measurements of NO concentration in gas samples and in atmospheric-pressure flames. The technique is suitable for applications that offer only a single direction for optical access and when significant elastic scatter is present.  相似文献   

18.
Si nanocrystallites of various sizes and oxygen-containing Si nanoparticles with different oxygen contents were prepared by vapor condensation. The Si nanocrystallites showed a visible light emission from 500 nm to 900 nm with the peak at 800 nm, and the intensity of photoluminescence increased with decreasing the particle size. This photoluminescence observed in vacuum could be quenched by air and hydrogen, and reappeared after the sample chamber was evacuated. The oxygen-containing Si nanoparticles consisting mainly of Si oxide were amorphous and had an average particle size of approximately 20 nm. Increasing the oxygen content of nanoparticles caused a blueshift of the absorption edge in the transmission spectra. A blue-green photoluminescence with two peaks at 500 nm and 800 nm was observed from these oxygen-containing Si nanoparticles. The luminescence intensity increased with the oxygen content of nanoparticles, and was very sensitive to the ambient atmosphere. Much lower intensity was observed in air, but higher intensity could be recovered in vacuum. Surface states and oxygen-induced luminescent centers were proposed to be responsible for the photoluminescence from the Si nanocrystallites and oxygen-containing Si nanoparticles, respectively. The reversible ambient effect in both cases could be explained by surface charge redistribution during the gas adsorption and desorption processes.  相似文献   

19.
A novel tri(8-hydroxyquioline) aluminum (AlQ3) nanostructure was prepared on large scale at low cost by low-temperature physical vapor deposition (PVD). The morphologies, the chemical bondings, and photoluminescence of the AlQ3 nanostructure were investigated by environmental scanning electronic microscopy (ESEM), Fourier transform infrared spectrum (FT-IR), and photoluminescence (PL) spectra, respectively. The AlQ3 nanostructure was composed of micro-sphere with nanowire-cluster growing on the surface. The diameter of micro-sphere and nanowire were about 5 microm and 80 nm, respectively. FT-IR results indicated that the AlQ3 molecule had a strong thermal stability under research conditions. The growth mechanism of the novel nanostructure was discussed. The novel organic nanostructure would be believed to attractive building field-emission devices and other optical devices.  相似文献   

20.
2D transition metal dichalcogenides materials are explored as potential surface‐enhanced Raman spectroscopy substrates. Herein, a systematic study of the Raman enhancement mechanism on distorted 1T (1T′) rhenium disulfide (ReS2) nanosheets is demonstrated. Combined Raman and photoluminescence studies with the introduction of an Al2O3 dielectric layer unambiguously reveal that Raman enhancement on ReS2 materials is from a charge transfer process rather than from an energy transfer process, and Raman enhancement is inversely proportional while the photoluminescence quenching effect is proportional to the layer number (thickness) of ReS2 nanosheets. On monolayer ReS2 film, a strong resonance‐enhanced Raman scattering effect dependent on the laser excitation energy is detected, and a detection limit as low as 10?9m can be reached from the studied dye molecules such as rhodamine 6G and methylene blue. Such a high enhancement factor achieved through enhanced charge interaction between target molecule and substrate suggests that with careful consideration of the layer‐number‐dependent feature and excitation‐energy‐related resonance effect, ReS2 is a promising Raman enhancement platform for sensing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号