首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
高速列车荷载作用下路轨系统及饱和地基的动力响应   总被引:2,自引:0,他引:2  
将在高速移动列车荷载作用下的铁路系统分为上覆路轨系统和下卧土体两部分.对于下卧土体部分,通过Fourier变换求解Biot多孔饱和介质的动力方程.对于路轨系统,将钢轨简化为无限长弹性Euler梁,将枕木简化为连续质量块,同时考虑道渣层的影响.用一系列符合列车几何尺寸的点荷载来模拟列车荷载.在Fourier变换域内,联立路轨系统和下卧土体的动力方程,求解在列车荷载作用下的钢轨位移和加速度、土体位移和加速度及土体孔压的表达式.利用数值积分方法对表达式进行Fourier逆变换,得到钢轨位移和加速度、土体孔压在时域内的表达式.通过算例讨论了荷载移动速度和土体渗透系数对钢轨速度和加速度及土体孔压的影响.结果表明,水相介质的存在和荷载移动速度均对土体动力响应产生很大影响.  相似文献   

2.
移动荷载下无面层加筋路基的动力响应   总被引:1,自引:0,他引:1  
为研究移动荷载下饱和加筋复合土体的动力响应问题,采用半解析方法,将加筋路基看成宏观上的横观各向同性体,由Biot波动方程出发,对荷载进行Fourier级数展开,假设响应函数的级数形式,结合边界条件,由待定系数法求解考虑固液耦合作用的饱和加筋复合土体在移动荷载作用下土体位移、有效应力及孔压的表达式,通过计算分析加筋率、筋材模量、荷载移动速度对复合土体竖向位移和孔压的影响.数值分析结果表明:加筋率只有在一定范围内时加筋效果才会比较明显;加筋复合土体表面最大竖向位移随着速度的增大而增大,达到峰值后迅速减小.  相似文献   

3.
移动荷载下加筋道路系统的动力响应   总被引:2,自引:0,他引:2  
将加筋道路的面层简化为弹性梁,加筋地基作为横观各向同性体,同时考虑了下卧土层孔隙水的影响,用半解析法对在匀速移动条形线荷载作用下的加筋道路体系的动力响应问题进行了研究.由忽略土粒压缩和土体自重的Biot波动方程出发,对荷载进行Fourier级数展开,假设了响应函数的级数形式,结合边界条件,由待定系数法求解了考虑固液耦合作用的加筋道路在移动荷载作用下的土体位移、有效应力及孔压表达式.求解过程中考虑了面层和加筋地基之间的相互作用,并假设两者在接触面处竖向位移相等.通过计算,分析了加筋率、筋材模量、荷载移动速度等对路面竖向位移的影响.数值分析结果表明,当加筋率在0.010~0.022时,对加筋效果的影响较大;加筋道路路面竖向位移随着荷载移动速度的增大而增大,达到峰值后迅速减小.  相似文献   

4.
为了研究列车加减速引起的饱和地基振动问题,基于两相介质Biot动力控制方程的简化u-p格式,开发二维饱和土体单元. 通过引入饱和土体黏弹性人工边界,求解移动点荷载作用下的二维饱和地基动力响应,并与半解析解进行对比验证,说明饱和土体单元的正确性和黏弹性人工边界的适用性. 结合E-B梁单元、弹簧-黏壶单元和集中质量单元对轨枕、道砟离散支承的轨道结构及饱和地基进行二维有限单元离散. 将列车荷载简化为平面内的移动轴荷载,通过与列车匀速时对比研究列车加速和减速时饱和地基的孔压、位移响应及离散轨枕、道砟的加速度响应. 结果表明列车减速将增大轨枕、道砟的水平及竖向加速度峰值;列车加速和减速在饱和地基中引起方向相反的土体水平向位移,且减速时土体水平位移峰值更大;列车加速和减速均增大土体竖向位移峰值.  相似文献   

5.
移动荷载作用下横观各向同性饱和地基的动力响应   总被引:2,自引:1,他引:2  
利用半解析法对移动条形荷载作用下横观各向同性饱和两相弹性介质的动力响应问题进行了研究.由忽略土粒压缩和土体自重的Biot波动方程出发,对荷载进行Fourier级数展开,假设了响应函数的级数形式,利用土体表面边界条件,由待定系数法求解了考虑固液耦合作用的两相介质在移动荷载作用下的土体位移、有效应力及孔压表达式.通过计算,给出了不同土体渗透系数,以及荷载移动速度下横观各向同性对土体位移响应的影响.数值结果表明,横观各向同性对土体位移响应影响较大.  相似文献   

6.
利用Biot波动理论、无限大板的弹性理论,研究了移动荷载作用下饱和土地基上覆弹性板的动力响应问题.首先引入两类势函数解耦Biot波动方程,由所引入势函数及二维Fourier变换,得出了土体位移、应力及孔压在变换域内的通解.再根据无限大板的弹性理论求解变换域内饱和土的波动系数及板的内力表达式.最后利用IFFT算法得出时间-空间域内的解析解.通过具体算例,分析了荷载移动速度、土层剪切模量对板内力、土体的动力响应的影响.  相似文献   

7.
为了研究桩承式加筋路堤在移动荷载作用下的特性,采用FLAC 3D软件建立了移动荷载作用下道路的三维动力流固耦合分析模型,对桩承式加筋路堤和天然路堤在移动荷载作用下的竖向变形、桩土应力比、超孔隙水压力、加速度等进行了对比分析,并研究了不同轴载对路堤竖向变形的影响.分析结果表明:移动荷载作用下,桩承式加筋路堤通过桩体土拱效应和格栅张拉膜效应的联合作用,其路面竖向变形、桩土应力比、超孔隙水压力、加速度均比天然路堤的结果明显减小;随着轴载的增加,桩承式加筋路堤路面竖向变形不断增大.  相似文献   

8.
移动车辆荷载作用下路面的动力响应   总被引:1,自引:0,他引:1  
利用半解析的方法研究了车辆荷载作用下高速公路的动力响应问题.建立了三维道路系统模型,采用Kirchhoff小变形无限大薄板来模拟混凝土面层,多孔饱和半空间来模拟路面以下土体,假定薄板与半空间光滑接触,且接触面完全透水.板的竖向位移可由接触条件求得.车辆荷载用4个均布矩形荷载来模拟.在忽略土颗粒缩性与自重的情况下,半空间土体引入Biot波动方程.通过傅里叶变换把土体与板的控制方程转化为常微分方程进行求解,结合土体的边界条件以及土体与板的接触条件求得在变换域里的土体竖向位移表达式,采用快速傅里叶变换(FFT)来进行逆变换求得土体时域内的位移.通过数值计算表明,荷载移动速度、土体的渗透系数以及板的刚度对道路系统位移响应的影响比较明显.  相似文献   

9.
根据Biot波动理论,采用传递、反射矩阵(TRM)方法研究了移动荷载作用下3D层状饱和土动力响应问题.由快速Fourier逆变换法得到层状土地基位移、应力及孔压在时间-空间域内的数值解,利用计算的结果与文献结果相比较,二者相吻合,验证了算法的正确性.通过算例分析表明对于有下卧刚性层的饱和土体,较薄的饱和土体层,在高速时响应更有振荡性.  相似文献   

10.
变速荷载作用下加筋低路堤动力响应分析   总被引:1,自引:0,他引:1  
为研究变速荷载作用下加筋低路堤的动力响应,将荷载假设成变速均布线荷载,并考虑由于荷载变速产生的水平向应力,将加筋低路堤视为层状各向同性弹性层,采用Goodman模型表示层间接触条件。利用Garlerkin法推导出Fourier变换域内加筋低路堤动力响应的控制方程,提出一种模态叠加法,Duhamel积分和Fourier逆变换相结合的方法推导出任意时刻动力响应的数值解。采用两个算例验证方法的正确性,分析层间接触条件、荷载加速度、路堤高度和筋材刚度对加筋低路堤动力响应的影响。结果表明:层间接触状态对路面结构层底部的位移影响显著,尤其对纵向位移影响很大,且变速状态下这种影响更加明显,工程中应尽量使加筋土上下表面处于完全连续状态;随着初速度和加速度的增加,路面结构层动挠度显著增加,地基土表面动应力峰值明显增加,动应力路径显著增大且沿顺时针偏转;加速度对于正应力和剪应力在加筋低路堤中的衰减有一定的影响;增加加筋材料刚度会导致应力在加筋低路堤中的衰减,剪应力比最大可减小47.9%,正应力比最大可减小29%。  相似文献   

11.
2.5D有限元分析列车荷载引起非饱和土地面振动   总被引:1,自引:1,他引:0  
为研究高速列车荷载引起非饱和土地面振动,将地基视为三相介质,开发非饱和地基2.5维有限单元方法.用Euler梁模型模拟轨道系统,对控制方程进行时间Fourier变换和轨道方向波数变换,结合边界条件和Galerkin法推导出频域内2.5维有限元方程,频域-波数域内解答通过快速Fourier逆变换得到时域-空间域结果,通过数值分析考察车速和路基饱和度对地面振动及超静孔隙水压力影响.结果表明:车速较低时,路基从近饱和到完全饱和轨道中心处地面竖向振动位移幅值显著增加;同一速度下非饱和路面加速度幅值大于饱和路面,其地面振动位移和加速度随时间更快衰减.同一车速下距轨道中心8 m处非饱和路基地面振动加速度峰值远大于饱和路基,车速超过300 km/h后两者地面振动位移幅值趋于相等.近轨道处地面振动幅值快速衰减,远轨道处衰减变慢.轨道中心下超静孔隙水压力分布深度为地表下0~4.5 m,最大峰值约在1.8 m,且随路基饱和度降低显著减少.  相似文献   

12.
A three-dimensional dynamic finite element model of track-ballast-embankment and piled raft foundation system is established. Dynamic response of a railway embankment to a high-speed train is simulated for two cases: soft ground improved by piled raft foundation, and untreated soft ground. The obtained results are compared both in time domain and frequency domain to evaluate the effectiveness of the ground improvement in mitigating the embankment vibrations induced by high-speed trains. The results show that ground improving methods can significantly reduce the embankment vibrations at all considered train speeds(36-432 km/h). The ground response to a moving load is dictated largely by the relationship between load speed and characteristic value of wave velocities of the ground medium. At low speeds, the ground response from a moving load is essentially quasi-static. That is, the displacements fields are essential the static fields under the load simply moving with it. For the soft ground, the displacement on the ballast surface is large at all observed train speeds. For the model case where the ground is improved by piled raft foundation, the peak displacement is reduced at all considered train speeds compared with the case without ground improvement. Based on the effect of energy-dissipating of ballast-embankment-ground system with damping, the train-induced vibration waves moving in ballast and embankment are trapped and dissipated, and thus the vibration amplitudes of dynamic displacement outside the embankment are significantly reduced. But for the vibration amplitude of dynamic velocity, the vibration waves in embankment are absorbed or reflected back, and the velocity amplitudes at the ballast and embankment surface are enhanced. For the change of the vibration character of embankment and ballast, the bearing capacity and dynamic character are improved. Therefore, both of the static and dynamic displacements are reduced by ground improvement; the dynamic velocity of ballast and embankment increases with the increase of train speed and its vibration noise is another issue of concern that should be carefully evaluated because it is associated with the running safety and comfort of high-speed trains.  相似文献   

13.
地铁运行引起的饱和地基动力响应   总被引:2,自引:0,他引:2  
基于Biot饱和多孔介质的波动方程,通过对时间的Fourier变换得出频域内的波动方程,结合边界条件利用Galerkin法推导出频域-波数域内的u-w格式的2.5维有限元方程,通过快速Fourier逆变换求得三维时域-空间域内的动力响应.通过计算实例验证了计算模型.建立地铁-隧道-饱和地基动力相互作用模型,分析地铁移动荷载引起的饱和地基动力响应.研究表明,地铁荷载加振频率对振动幅值及衰减规律的影响很大,控制荷载自振频率是减小环境振动的最佳措施.  相似文献   

14.
为了解决饱和多孔介质的建模问题,采用工程混合物理论建立了饱和多孔介质体积本构理论框架。首先,假定多孔固相与流相基质体积变形功相互独立,采用Terzaghi有效球应力、孔压和流体基质压力作为本构模型的应力状态变量,获得了固相、固相基质和流相基质体应变的余能表达式。其次,根据Lade和De Boer模型试验加卸载测试数据,建立了加卸载阶段饱和多孔白塞木立方体流固两相体积本构方程,推导了固相体积切线模量、Biot切线系数和流相Biot切线模量等力学参数计算公式。分析了加载阶段固相体积切线模量,Biot切线系数,流相Biot切线模量等力学参数随Terzaghi有效球应力和孔压变化规律。最后,根据本文体积本构模型和静力平衡方程建立了饱和多孔介质的一维固结方程,数值分析了饱和多孔白塞木立方体的固结特性,获得了固结度和沉降随时间变化曲线。研究表明,固相体积切线模量随Terzaghi有效球应力的增大而增大,随孔压 的增大而减小。Biot切线系数介于0.42~0.95之间,随Terzaghi有效球应力和孔压的增大而减小。流体Biot切线模量随Terzaghi有效球应力增大而先减小后增大,随孔压增大而减小。孔压切线系数在大多数情况下小于1.0。考虑固相基质变形时饱和多孔介质的初始孔压不等于外荷载,因此饱和多孔介质在外荷载作用下存在瞬时沉降。本文提出的建模方法可用于非线性饱和多孔介质的建模和数值分析工作。  相似文献   

15.
根据Biot动力理论,采用Fourier和Hankel变换方法得到了半空间饱和土受移动荷载及土体内受垂直简谐荷载作用下的变换域内基本解.再根据虚拟桩法,得出了移动载荷作用下桩基的第二类Fredholm积分方程.最后应用IFFT方法得到时间、空间域内单桩的动力响应.数值结果表明,移动荷载会引起桩身的负摩擦力;桩身最大轴力、孔压随移动荷载速度增加而增大;此外,在桩上端部会出现孔压集中现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号