首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic responses of a recurrent-fuzzy-neural-network (RFNN) sliding-mode controlled motor-toggle servomechanism are described. The servomechanism is a toggle mechanism actuated by a permanent magnet (PM) synchronous servo motor. First, a total sliding-mode control system, which is insensitive to uncertainties including parameter variations and external disturbance in the whole control process, is introduced. In the baseline model design a computed torque controller is designed to cancel the nonlinearity of the nominal plant. In the curbing controller design an additional controller is designed using a new sliding surface to ensure the sliding motion through the entire state trajectory. Therefore, in the total sliding-mode control system the controlled system has a total sliding motion without a reaching phase. Then, to overcome the two main problems with sliding-mode control, a RFNN sliding-mode control system is investigated to control the motor-toggle servomechanism. In the RFNN sliding-mode control system a RFNN bound observer is utilized to adjust the uncertainty bounds in real time. To guarantee the convergence of tracking error, analytical methods based on a discrete-type Lyapunov function are proposed to determine the varied learning rates of the RFNN. Simulated and experimental results due to periodic sinusoidal command show that the dynamic behaviors of the proposed control systems are robust with regard to uncertainties  相似文献   

2.
Field orientation techniques without flux measurements depend on the parameters of the motor, particularly on the rotor resistance or rotor time constant (for rotor field orientation). Since these parameters change continuously as a function of temperature, it is important that the value of rotor resistance is continuously estimated online. A fourth-order sliding-mode flux observer is developed in this paper. Two sliding surfaces representing combinations of estimated flux and current errors are used to enforce the flux and current estimates to their real values. Switching functions are used to drive the sliding surfaces to zero. The equivalent values of the switching functions (low-frequency components) are proven to be the rotor resistance and the inverse of the rotor time constant. This property is used to simultaneously estimate the rotor resistance and the inverse of the time constant without prior knowledge of either the rotor resistance or the magnetizing inductance. Simulations and experimental results prove the validity of the proposed approach  相似文献   

3.
In this paper, the dynamic responses of a recurrent-fuzzy-neural-network (RFNN) sliding-mode-controlled permanent-magnet (PM) synchronous servo motor are described. First, a newly designed total sliding-mode control system, which is insensitive to uncertainties, including parameter variations and external disturbance in the whole control process, is introduced. The total sliding-mode control comprises the baseline model design and the curbing controller design. In the baseline model design, a computed torque controller is designed to cancel the nonlinearity of the nominal plant. In the curbing controller design, an additional controller is designed using a new sliding surface to ensure the sliding motion through the entire state trajectory. Therefore, in the total sliding-mode control system, the controlled system has a total sliding motion without a reaching phase. Then, to overcome the two main problems with sliding-mode control, i.e., the assumption of known uncertainty bounds and the chattering phenomena in the control effort, an RFNN sliding-mode control system is investigated to control the PM synchronous servo motor. In the RFNN sliding-mode control system, an RFNN bound observer is utilized to adjust the uncertainty bounds in real time. To guarantee the convergence of tracking error, analytical methods based on a discrete-type Lyapunov function are proposed to determine the varied learning rates of the RFNN. Simulated and experimental results due to periodic step and sinusoidal commands show that the dynamic behaviors of the proposed control systems are robust with regard to uncertainties  相似文献   

4.
Robust decoupled control of direct field-oriented induction motor drive   总被引:2,自引:0,他引:2  
This paper focuses on the development of a decoupling mechanism and a speed control scheme based on total sliding-mode control (TSMC) theory for a direct rotor field-oriented (DRFO) induction motor (IM). First, a robust decoupling mechanism including an adaptive flux observer and a sliding-mode current estimator is investigated to decouple the complicated flux and torque dynamics of an IM. The acquired flux angle is utilized for the DRFO object such that the dynamic behavior of the IM is like that of a separately excited dc motor. However, the control performance of the IM is still influenced seriously by the system uncertainties including electrical and mechanical parameter variation, external load disturbance, nonideal field-oriented transient responses, and unmodeled dynamics in practical applications. In order to enhance the robustness of the DRFO IM drive for high-performance applications, a TSMC scheme is constructed without the reaching phase in conventional sliding-mode control (CSMC). The control strategy is derived in the sense of Lyapunov stability theorem such that the stable tracking performance can be ensured under the occurrence of system uncertainties. In addition, numerical simulations as well as experimental results are provided to validate the effectiveness of the developed methodologies in comparison with a model reference adaptive system flux observer and a CSMC system.  相似文献   

5.
The sliding-mode control concept is applied in the outer loop of a speed drive system utilizing a series-connected wound rotor induction machine (SCWRIM). A design procedure is outlined for the sliding-mode speed controller. The methods of decoupling and torque linearization for the SCWRIM are derived using the field-orientation as well as the torque angle control concepts. Sliding-mode control with cascaded integral operation is used to reduce torque chattering and steady-state error. Accelerator sliding lines are introduced to enable better utilization of the torque capability of the drive system. The parameter-insensitive response provided by this method of control is demonstrated. The effects on the dynamic and static performance with varying drive inertia and load disturbance are studied and compared with the conventional approach using PI control. The influences of sampling effects on sliding-mode control performance are also illustrated and discussed. Microcontroller-based implementation of the speed drive system is employed. Both simulation and experimental results are presented  相似文献   

6.
This paper describes an effective online method for identifying both stator and rotor resistances, which is useful in robust speed control of induction motors without rotational transducers. The identification method for stator resistance is derived from the steady-state equations of induction motor dynamics. On the other hand, the identification method for rotor resistance is based on the linearly perturbed equations of induction motor dynamics about the operating point. The identification method for both stator and rotor resistances uses only the information of stator currents and voltages. It can provide fairly good identification accuracy regardless of load conditions and be easily incorporated into any sensorless speed controller proposed in the prior literature. Some experimental results are presented to demonstrate the practical use of the identification method. A sensorless speed control system has been built for experimental work, in which all algorithms for identification and control are implemented on a digital signal processor. The experimental results confirm that the proposed method allows for high-precision speed control of commercially available induction motors without rotational transducers  相似文献   

7.
The dynamic response of a sliding-mode-controlled slider-crank mechanism, which is driven by a permanent-magnet (PM) synchronous servo motor, is studied in this paper. First, a position controller is developed based on the principles of sliding-mode control. Moreover, to relax the requirement of the bound of uncertainties in the design of a sliding-mode controller, a fuzzy neural network (FNN) sliding-mode controller is investigated, in which a FNN is adopted to adjust the control gain in a switching control law on line to satisfy the sliding mode condition. In addition, to guarantee the convergence of tracking error, analytical methods based on a discrete-type Lyapunov function are proposed to determine the varied learning rates of the FNN. Numerical and experimental results show that the dynamic behaviors of the proposed controller-motor-mechanism system are robust with regard to parametric variations and external disturbances. Furthermore, compared with the sliding-mode controller, smaller control effort results and the chattering phenomenon is much reduced by the proposed FNN sliding-mode controller  相似文献   

8.
This paper proposes a hybrid terminal sliding-mode observer based on the nonsingular terminal sliding-mode (NTSM) and the high-order sliding-mode (HOSM) for the rotor position and speed estimation in the permanent-magnet synchronous motor control system. An NTSM manifold is utilized to realize both fast convergence and better tracking precision. In addition, a derivative estimator is used to obtain the derivative of the sliding-mode function. Meanwhile, an HOSM control law is designed to guarantee the stability of the observer and eliminate the chattering, so that smooth back-electromotive-force (EMF) signals can be obtained without a low-pass filter. According to the back-EMF equations, the rotor position and speed of the motor can be calculated. Simulation and experimental results are presented to validate the proposed method.   相似文献   

9.
In this paper we present a robust speed control strategy for an induction motor under field orientation. The control framework employed properly represents the induction motor state-space model and its inherent variations, which are treated as structured uncertainties. Applying an /spl Hscr//sub /spl infin//, optimization methodology on this framework we derive a stabilizing controller to meet design objectives and then robust stability and performance against such variations are checked by using /spl mu/-analysis. No on-line tuning is required for the parameters of the derived controller, which is the dynamic system responsible to keep the rotor flux orientation as well as the speed regulation at design levels, irrespective of the motor operating points. A general methodology arose from the usage of the proposed strategy and simulated experiments showed satisfactory results for the robust speed control of an induction motor.  相似文献   

10.
Adaptive robust fast control for induction motors   总被引:1,自引:0,他引:1  
A new induction motor position controller that exhibits fast response and robustness is proposed. The control strategy is based on the well-known linear quadratic regulator design principle. By adaptively adjusting a penalty parameter, it is shown that the control strategy enables the induction motor system to exhibit fast convergence. Meanwhile, since the sliding mode will occur in the transient process, the fast control inherits the robustness in matched uncertainties of the sliding-mode control. In addition, to alleviate the chattering effect of the switching control signal, a low-pass filter is used to smooth the control and its design is integrated with the switching control design. The performance of the proposed control strategy is verified by experimental results  相似文献   

11.
Novel induction motor control optimizing both torque response and efficiency is proposed in the paper. The main contribution of the paper is a new structure of rotor flux observer aimed at the speed-sensorless operation of an induction machine servo drive at both low and high speed, where rapid speed changes can occur. The control differs from the conventional field-oriented control. Stator and rotor flux in stator fixed coordinates are controlled instead of the stator current components in rotor field coordinates isd and isq. In principle, the proposed method is based on driving the stator flux toward the reference stator flux vector defined by the input command, which are the reference torque and the reference rotor flux. The magnitude and orientation angle of the rotor flux of the induction motor are determined by the output of the closed-loop rotor flux observer based on sliding-mode control and Lyapunov theory. Simulations and experimental tests are provided to evaluate the consistency and performance of the proposed control technique  相似文献   

12.
In this work, a novel robust sliding-mode control (SMC) method has been provided for uncertain stochastic Markovian jumping systems subject to actuator degradation, such that the closed-loop system is globally asymptotically stable (with probability one). In the design of switching functions, a set of specified matrices are employed such that the connections among sliding surfaces corresponding to each mode are established. Then, a sliding-mode controller is synthesized to ensure the reachability of the specified switching surface despite actuator degradation and uncertainties. Finally, the simulation results illustrate the proposed method and the effectiveness.  相似文献   

13.
A field-oriented control method based on a predictive observer with digital current regulation of an induction motor, without speed and voltage sensors, is proposed. Measuring only stator currents and estimating motor speed and rotor fluxes by a predictive state observer with variable pole selection the stator currents are controlled to be exactly equal to the reference currents at every sampling instant. The resulting speed and rotor fluxes are estimated with low sensitivity to parameter variation, and the torque ripples are reduced. The proposed method consists of four parts: identification of the rotor speed, derivation of a digital control law, construction of a state observer that predicts the rotor flux and the stator currents, and derivation of field-oriented control. A theoretical analysis of the method, computer simulations, and experimental results are described  相似文献   

14.
Adaptive enhanced fuzzy sliding-mode control for electrical servo drive   总被引:2,自引:0,他引:2  
The design and properties of an adaptive enhanced fuzzy sliding-mode control (AEFSMC) system for an indirect field-oriented induction motor (IM) drive to track periodic commands are addressed in this study. A newly designed EFSMC system, in which a translation-width idea is embedded into the FSMC, is introduced initially. Moreover, to confront the uncertainties existed in practical applications, an adaptive tuner, which is derived in the sense of the Lyapunov stability theorem, is utilized to adjust the EFSMC parameter for further assuring robust and optimal control performance. The indirect field-oriented IM drive with the AEFSMC scheme possesses the salient advantages of simple control framework, free from chattering, stable tracking control performance, and robust to uncertainties. In addition, numerical simulation and experimental results due to periodic sinusoidal commands are provided to verify the effectiveness of the proposed control strategy, and its advantages are indicated in comparison with FSMC and EFSMC systems.  相似文献   

15.
This paper addresses the application of an intelligent optimal control system (IOCS) to control an indirect field-oriented induction servo motor drive for tracking periodic commands via a wavelet neural network. With the field orientation mechanism, the dynamic behavior of an induction motor is rather similar to a linear system. However, the uncertainties, such as mechanical parametric variation, external load disturbance and unmodeled dynamics in practical applications, influence the designed control performance seriously. Therefore, an IOCS is proposed to confront these uncertainties existing in the control of the induction servo motor drive. The control laws for the IOCS are derived in the sense of the optimal control technique and Lyapunov stability theorem, so that system-tracking stability can be guaranteed in the closed-loop system. With the proposed IOCS, the controlled induction servo motor drive possesses the advantages of good tracking control performance and robustness to uncertainties under wide operating ranges. The effectiveness of the proposed control scheme is verified by both simulated and experimental results. Moreover, the advantages of the proposed control system are indicated in comparison with the sliding-mode control system.  相似文献   

16.
In this paper, the nonlinear sliding-mode torque and flux control combined with the adaptive backstepping approach for an induction motor drive is proposed. Based on the state-coordinates transformed model representing the torque and flux magnitude dynamics, the nonlinear sliding-mode control is designed to track a linear reference model. Furthermore, the adaptive backstepping control approach is utilized to obtain the robustness for mismatched parameter uncertainties. With the proposed control of torque and flux amplitude, the controlled induction motor drive possesses the advantages of good transient performance and robustness to parametric uncertainties, and the transient dynamics of the induction motor drive can be regulated through the design of a linear reference model which has the desired dynamic behaviors for the drive system. Finally, some experimental results are demonstrated to validate the proposed controllers  相似文献   

17.
This paper describes a newly designed nonlinear control strategy to control a linear induction motor servo drive for periodic motion. Based on the concept of the nonlinear state feedback theory and optimal technique, a nonlinear control strategy, which is composed of an adaptive optimal control system and a sliding-mode flux observation system, is developed to improve the drawbacks in previous works concerned with complicated intelligent control. The control and estimation methodologies are derived in the sense of Lyapunov theorem so that the stability of the control system can be guaranteed. The sliding-mode flux observation system is implemented using a digital signal processor with a high sampling rate to make it possible to achieve good dynamics. Computer simulations and experimental results have been conducted to validate the effectiveness of the proposed control scheme under the occurrence of possible uncertainties and different reference trajectories. The merits of the proposed control system are indicated in comparison with a traditional optimal control system.  相似文献   

18.
To address the problem of speed and flux observation in sensorless control of a bearingless induction motor under the influence of parameter changes and external disturbances, a speed sensorless control strategy combining radial basis function (radial basis function, RBF) neural network and fractional sliding mode is proposed. According to the current error, fractional sliding mode control rate is designed to reduce the speed-observed chatter of the bearingless induction motor and its adverse effect on the rotor suspension stability. Then, combined with the theory of RBF neural network, the new optimal control rate is obtained by using its approximation ability. At the same time, the stability of two control rate is proved. Thus, the flux linkage and speed under normal operation, parameter change and external disturbance are observed and the new speed sensorless control is realized. The simulation and experimental results show that the proposed joint RBF neural network approximation algorithm and fractional sliding mode speed sensorless control system of the bearingless induction motor can not only effectively identify the flux and speed under three conditions of no-load, load disturbance and speed change, but also ensure the good suspension of the motor rotor in the x-axis and y-axis directions.  相似文献   

19.
A field-programmable gate array (FPGA)-based adaptive backstepping sliding-mode controller is proposed to control the mover position of a linear induction motor (LIM) drive to compensate for the uncertainties including the friction force. First, the dynamic model of an indirect field-oriented LIM drive is derived. Next, a backstepping sliding-mode approach is designed to compensate the uncertainties occurring in the motion control system. Moreover, the uncertainties are lumped and the upper bound of the lumped uncertainty is necessary in the design of the backstepping sliding-mode controller. However, the upper bound of the lumped uncertainty is difficult to obtain in advance of practical applications. Therefore, an adaptive law is derived to adapt the value of the lumped uncertainty in real time, and an adaptive backstepping sliding-mode control law is the result. Then, an FPGA chip is adopted to implement the indirect field-oriented mechanism and the developed control algorithms for possible low-cost and high-performance industrial applications. The effectiveness of the proposed control scheme is verified by some experimental results. With the adaptive backstepping sliding-mode controller, the mover position of the FPGA-based LIM drive possesses the advantages of good transient control performance and robustness to uncertainties in the tracking of periodic reference trajectories.  相似文献   

20.
This paper addresses an adaptive observation system and a wavelet-neural-network (WNN) control system for achieving the favorable decoupling control and high-precision position tracking performance of an induction motor (IM) drive. First, an adaptive observation system with an inverse rotor time-constant observer is derived on the basis of model reference adaptive system theory to preserve the decoupling control characteristic of an indirect field-oriented IM drive. The adaptive observation system is implemented using a digital signal processor with a high sampling rate to make it possible to achieve good dynamics. Moreover, a WNN control system is developed via the principle of sliding-mode control to increase the robustness of the indirect field-oriented IM drive with the adaptive observation system for high-performance applications. In the WNN control system, a WNN is utilized to predict the uncertain system dynamics online to relax the requirement of uncertainty bound in the design of a traditional sliding-mode controller. In addition, the effectiveness of the proposed observation and control systems is verified by simulated and experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号