首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
TC11钛合金高温变形本构关系研究   总被引:4,自引:0,他引:4  
在Thermecmastor-Z型热加工模拟试验机上,对TC11钛合金在990℃~1080℃、0.001s-1~70s-1范围内进行了高温压缩实验。通过真应力-真应变曲线,分析了流动应力随变形热力参数的变化规律,并在Arrhenius方程的基础上考虑了真应变对流动应力的影响,构建出TC11钛合金的本构关系。误差分析表明,该本构方程有较好的精度,可适合于工程应用。  相似文献   

2.
《塑性工程学报》2016,(2):120-125
利用Gleeble-3800热模拟试验机进行热压缩实验,研究了TC4-DT钛合金在温度1163K~1293K、应变速率为0.005s~(-1)~0.5s~(-1)、变形量为60%条件下的热变形行为。根据应力-应变曲线分析该合金的流变应力变化特点,建立该合金的Arrhenius双曲正弦型本构方程。结果表明,所建立的本构方程与实验值吻合程度较高,为制定TC4-DT钛合金热加工工艺规范提供理论依据。  相似文献   

3.
通过TC4-DT钛合金在1181~1341 K,0.01~10 s~(-1)条件下热模拟压缩试验,得到其在不同条件下高温变形真应力-真应变曲线。采用回归分析和多项式拟合建立了应变补偿高温变形本构方程。结果表明:各变形条件下的流变应力曲线均呈现应变硬化和流动软化,低温高应变速率特征更明显。当应变速率低于1 s~(-1)时,预测值与实验值吻合程度较高,相关系数和平均相对误差绝对值分别为0.9952和5.78%,此修正模型可作为TC4-DT钛合金高温变形本构方程。  相似文献   

4.
利用Gleeble-3500热模拟试验机进行等温恒应变速率热压缩实验,研究了TC4钛合金在温度800~950℃、应变速率0.001~10s-1条件下的流动软化行为。研究发现随变形温度降低和应变速率增大TC4钛合金的流动软化程度增大,且800~850℃、应变速率1~10s-1变形时的流动软化主要是塑形流动失稳引起的,温度900~950℃、应变速率0.001~0.1s-1条件变形时,流动软化主要是片状α相的等轴化引起的。引入应变对材料常数α、n、A和Q的影响,建立了考虑应变的TC4钛合金Arrhenius本构方程,建立的本构模型精度较好,在800℃、850℃和10s-1条件以及在900℃、950℃和0.1s-1条件下,模型平均绝对误差分别为4.2%和4.3%。TC4钛合金的平均变形激活能为403kJ/mol,平均应变速率敏感指数为0.26。  相似文献   

5.
研究高性能材料的热塑性变形行为及影响机理对于优化成型工艺、提升产品质量具有重要意义。基于Gleeble-3800热力模拟实验机对TC4钛合金开展高温压缩实验,在变形温度800~950℃双相区,应变速率0.001~10 s-1条件下,该合金高温流变应力随变形温度的升高以及应变速率的降低显著降低,且具备典型动态再结晶的特征。同时,为了进一步提高材料本构模型的计算精度,本文提出一种基于AJSA-BP修正的本构关系,旨在辅助搜索优化BP神经网络训练过程中的权值和阈值,并与基于应变补偿的Arrhenius新型本构模型进行对比分析。结果表明,基于AJSA-BP算法计算的应力预测值偏差率不大于15%的占比为95.65%,平均相对误差为3.83%,具有更为显著的计算精度优势,可用于指导金属高温流变应力的精确预测。  相似文献   

6.
TC6钛合金高温变形力学行为研究   总被引:1,自引:0,他引:1  
在Thermecmaster-Z型热加工模拟试验机上对TC6钛合金在温度 80 0~ 10 4 0℃、应变速率 10 - 3~ 5 0s- 1、最大变形程度 5 0 %条件下的高温变形行为进行了研究。研究结果表明合适的工艺参数范围为变形温度 92 0~ 95 0℃、应变速率 1 0~ 1× 10 - 3s- 1。在分析其变形温度、变形程度和应变速率对流动应力影响规律的基础上提出了一种本构关系回归模型  相似文献   

7.
TC11钛合金热变形本构方程的建立   总被引:1,自引:0,他引:1  
利用Gleeble-1500D热模拟试验机,在变形温度为960~1050℃,应变速率为0.01~10s-1范围内对TC11钛合金进行等温恒应变速率压缩实验。通过真应力-真应变曲线,分析了变形温度和应变速率对流变应力的影响规律,并在Arrhenius双曲正弦型方程的基础上建立了适用于TC11钛合金热变形的本构方程。误差分析表明所建立的本构方程与实验值吻合较好,为制定TC11钛合金锻造工艺提供了理论依据。  相似文献   

8.
TC6钛合金的高温变形行为及组织演变   总被引:13,自引:0,他引:13  
在Thermecmaster-Z型热加工模拟试验机上对TC6钛合金在温度800℃~1040℃,应变速率10s~50s、最大变形程度50%条件下的高温流动应力变化规律进行了研究,进而分析了变形参数对微观组织的影响。结果表明合适的工艺参数是变形温度为920℃~950℃,应变速率为1.0s-1~1×10-3s-1。在变形过程中,变形温度对α相体积分数有着显著影响,应变速率对α相体积分数影响不大,但对α相晶粒的形态有一定的影响。最后在分析变形温度、变形程度和应变速率对流动应力影响规律的基础上提出了1种本构关系模型,其拟合精度较高,为进行钛合金高温变形过程的数值模拟打下了较好的基础。  相似文献   

9.
TC4-DT钛合金的热变形行为研究及加工图   总被引:1,自引:0,他引:1  
采用Gleeble-1500D热模拟试验机进行热压缩实验,研究了TC4-DT钛合金在温度850~980℃、应变速率为0.001~10 s-1、变形量为50%条件下的热变形行为。根据应力–应变曲线分析了该合金的流变应力变化特点,建立了该合金的Arrhenius型本构方程及加工图。结果表明:流变应力随变形温度降低及应变速率增大而升高;变形温度与应变速率对TC4-DT合金应力影响显著;本实验测得的平均激活能为587.2 kJ/mol;该合金合适的加工条件为<0.6 s-1,温度大于850℃。  相似文献   

10.
在Thermecmaster-Z型热模拟试验机上,对粗片状魏氏组织TC11钛合金在850~1000℃,0.001~10s-1范围内进行等温恒应变速率压缩试验.分析了流动应力随热力参数的变化规律,并对Arrhenius型方程的适用性进行了分析,在综合考虑应变速率、变形温度和应变量对流动应力影响的基础上,构建出适合粗片状魏氏组织TC11钛合金的本构关系.误差分析表明,该本构关系有较好的精度.  相似文献   

11.
采用GW-1200A型控制器配合高温加热炉在WDW-300电子万能试验机上通过等温压缩实验研究了Ti600合金在温度为25?800℃、应变速率为10-4和10-3 s-1条件下的热变形行为,获得了该合金在变形过程中的真应力-真应变曲线,建立了该合金的高温本构关系。结果表明:Ti600合金在较高的温度(600和800℃)下流变应力随应变速率增大而增大,在较低温度(25和300℃)时变化不太明显。在一定的应变率条件下,随着温度升高流变应力降低。考虑到Ti600合金在不同温度下的真应力-真应变曲线随温度变化的发展趋势,建立了修正的井上胜郎高温本构关系,与实验结果对比验证了模型是可靠的。通过扫描电镜(SEM)观察发现,在室温准静态压缩条件下Ti600合金的断裂形式以脆性断裂为主,同时在局部区域出现韧性断裂特征。  相似文献   

12.
TC4-DT钛合金的热变形行为研究   总被引:1,自引:1,他引:1  
利用Gleeble-1500型热模拟压缩试验机,研究了TC4-DT合金在750~950℃、应变速率为0.001~10 s-1、变形量为50%条件下的热变形行为,分析了该合金的流变应力变化特点及显微组织演变规律,建立了该合金的Arrhenius型本构方程.结果表明:流变应力随变形温度降低及应变速率增大而升高;变形温度与应变速率对TC4-DT合金显微组织影响显著,随着变形温度的升高及应变速率的降低,片层组织球化现象越明显;应变速率敏感指数随变形温度的升高而增大;在本实验条件下,TC4-DT合金的热变形激活能为603.51 kJ/mol,表明该合金的热变形主要是由高温扩散以外的过程控制,认为有动态再结晶发生.  相似文献   

13.
AZ91镁合金高温变形本构关系   总被引:7,自引:0,他引:7  
王智祥  刘雪峰  谢建新 《金属学报》2008,44(11):1378-1383
采用Gleeble-1500热模拟机对AZ91镁合金进行了高温压缩变形实验,分析了该合金在变形温度为250-400℃,应变速率为0.001-1 s-1条件下流变应力的变化规律.结果表明,变形温度和应变速率均对流变应力有显著的影响,流变应力随变形温度的升高和应变速率的降低而降低,当变形温度≥400℃、应变速率≤0.001 s-1时,流变应力随变形量的增加达峰值后呈稳态流变特征.并采用双曲正弦模型确定了该合金的变形激活能Q和应力指数n随应变量的变化规律,建立了相应的热变形本构关系.经实验验证,所建立的本构关系能较好地反映AZ91镁合金实际热变形行为特征.  相似文献   

14.
通过分析研究变形温度、应变速率及变形程度参数对TC4-DT钛合金高温变形行为的影响,建立了一种基于自适应模糊神经网络的TC4-DT钛合金高温变形本构关系预测模型。高温变形热模拟压缩试验的变形温度为750 ~1150 ℃,应变率为0.001~10 s–1,试样高度压缩率为50%。本研究中建立的网络模型集成了模糊推理系统误差反向传播(BP)神经网络的学习算法。结果表明,该模型的预测值与实验结果比较吻合,最大相对误差小于6%。本研究证明模糊神经网络是一种优化TC4-DT钛合金本构关系模型和优化变形工艺参数的有效、实用方法。  相似文献   

15.
在Gleeble-1500热模拟机上进行高温等温压缩试验,研究了Al-Cu-Mg-Ag合金在变形温度为300~500 ℃、应变速率为0.01~10.00 s-1条件下的流变变形行为,建立了Al-Cu-Mg-Ag合金热变形本构方程.结果表明,流变应力随温度的降低、应变速率的提高而增大,在应变速率小于10.00 s-1的条件下,流变应力随应变增加而迅速增大,达到峰值后趋于平稳,表现出动态回复的特征;在应变速率为10.00 s-1,温度大于300 ℃的条件下,应力达到峰值后逐渐下降,并出现锯齿波动现象,表明合金发生了局部动态再结晶;Al-Cu-Mg-Ag合金高温变形时的流变行为可用Zener-Hollomon参数来描述,其变形激活能为160.08 kJ/mol.  相似文献   

16.
用Gleeble-3500型热模拟试验机对TC4钛合金在变形温度750~950℃、应变速率0.1~50 s-1、最大变形量为50%条件下进行高温变形试验,进而分析了变形参数对变形抗力的影响.结果表明,高温压缩时,TC4钛合金的真应力-真应变曲线呈现出明显的动态再结晶特征;变形抗力受变形温度和应变速率的影响显著,受应变的影响较小,随变形温度的升高、应变速率的减小,变形抗力显著降低.最后提出了一种新型TC4钛合金高温变形的变形抗力模型,该模型拟合精度较好,计算值和实验数据的平均相对误差为5.25%,可以为热轧提供可靠的计算数据.  相似文献   

17.
采用热模拟压缩试验研究了Ti600合金在变形温度为800~1100℃、应变速率为0.001~10s-1范围内应力-应变曲线的变化规律。研究结果表明:Ti600高温钛合金热变形的流变应力随温度的升高和应变速率的降低而减小;随着应变的增大,合金的真应力-真应变曲线在经历了明显的加工硬化阶段后达到最大值,然后渐渐出现流变“软化”现象。以经典的双曲正弦形式的模型为基础建立了Ti600合金热变形的本构方程,同时也通过对数据回归处理确定了合金不同温度下的应力指数n、应变激活能Q等数值。  相似文献   

18.
Ti600合金的高温本构方程   总被引:1,自引:0,他引:1  
采用热模拟压缩试验研究了Ti600合金在变形温度为800~1100℃、应变速率为0.001~10s^-1范围内应力一应变曲线的变化规律。研究结果表明:Ti600高温钛合金热变形的流变应力随温度的升高和应变速率的降低而减小;随着应变的增大,合金的真应力一真应变曲线在经历了明显的加工硬化阶段后达到最大值,然后渐渐出现流变“软化”现象。以经典的双曲正弦形式的模型为基础建立了Ti600合金热变形的本构方程,同时也通过对数据回归处理确定了合金不同温度下的应力指数n、应变激活能Q等数值。  相似文献   

19.
TC4钛合金的热变形行为及其影响因素   总被引:8,自引:1,他引:8  
利用Gleeble1500热模拟机测试了Ti6Al4V合金在不同温度和不同应变速率下的真应力真应变曲线,观察热变形前后的组织,分析变形温度、应变速率、原始组织和热处理工艺对合金的热变形行为的作用及影响规律。结果表明,在应变速率为8.3×10-3s条件下,合金在600℃热变形时软化机制以动态回复为主,800℃至900℃热变形时软化机制以动态再结晶为主;700℃热变形时动态回复和动态再结晶可同时发生。淬火和时效可提高合金的热变形抗力。合金在600℃变形时,热变形抗力对在8.3×10-2s-8.3×100s范围变化的应变速率敏感性较差;当应变速率降至8.3×10-3s-1时,热变形抗力有较大幅度的降低。在相同的变形条件情况下,魏氏组织的流变应力高于等轴组织。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号