首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Adsorption mechanism of arsenic on nanocrystalline titanium dioxide   总被引:6,自引:0,他引:6  
Arsenate [As(V)] and arsenite [As(III)] interactions at the solid-water interface of nanocrystalline TiO2 were investigated using electrophoretic mobility (EM) measurements, Fourier transform infrared (FTIR) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and surface complexation modeling. The adsorption of As(V) and As(III) decreased the point of zero charge of TiO2 from 5.8 to 5.2, suggesting the formation of negatively charged inner-sphere surface complexes for both arsenic species. The EXAFS analyses indicate that both As(V) and As(III) form bidentate binuclear surface complexes as evidenced by an average Ti-As(V) bond distance of 3.30 A and Ti-As(III) bond distance of 3.35 A. The FTIR bands caused by vibrations of the adsorbed arsenic species remained at the same energy levels at different pH values. Consequently, the surface complexes on TiO2 maintained the same nonprotonated speciation at pH values from 5 to 10, and the dominant surface species were (TiO)2AsO2- and (TiO)2AsO- for As(V) and As(III), respectively. The surface configurations constrained with the spectroscopic results were formulated in the diffuse layer model to describe the adsorption behavior of As in the pH range between 4 and 12. The study suggests that TiO2 is an effective adsorbent for As removal due to its high surface area and the presence of high affinity surface hydroxyl groups.  相似文献   

2.
The mechanisms of the uranium(VI) sorption on schwertmannite and goethite in acid sulfate-rich solutions were studied by Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. The samples were prepared under N2 atmosphere and initial uranium(VI) concentrations of 1 x 10(-5) (pH 6.5) to 5 x 10(-5) M (pH 4.2). The ionic strength was adjusted using 0.01 M Na2SO4 or 0.01 M NaClO4, respectively. The EXAFS structural parameters for uranium(VI) sorbed on goethite in sulfate-rich, acid and near-neutral solutions indicate that uranium(VI) forms an inner-sphere, mononuclear, bidentate surface complex. This complex is characterized by a uranium-ferric-iron distance of approximately 3.45 A. Uranium(VI) sorbed onto schwertmannite in acid and sulfate-rich solution is coordinated to one or two sulfate molecules with a uranium-sulfur distance of 3.67 A. The EXAFS results indicate formation of binuclear, bidentate surface complexes and partly of mononuclear, monodentate surface complexes coordinated to the structural sulfate of schwertmannite. The formation of ternary uranium(VI)-sulfate surface complexes could not be excluded because of the uncertainty in assigning the sulfate either to the bulk structure or to adsorption reactions. The uranium(VI) adsorption onto schwertmannite in perchlorate solution occurs predominantly as a mononuclear, bidentate complexation with ferric iron due to the release of sulfate from the substrate.  相似文献   

3.
The molecular-scale immobilization mechanisms of uranium uptake in the presence of phosphate and goethite were examined by extended X-ray absorption fine structure (EXAFS) spectroscopy. Wet chemistry data from U(VI)-equilibrated goethite suspensions at pH 4-7 in the presence of ~100 μM total phosphate indicated changes in U(VI) uptake mechanisms from adsorption to precipitation with increasing total uranium concentrations and with increasing pH. EXAFS analysis revealed that the precipitated U(VI) had a structure consistent with the meta-autunite group of solids. The adsorbed U(VI), in the absence of phosphate at pH 4-7, formed bidentate edge-sharing, ≡ Fe(OH)(2)UO(2), and bidentate corner-sharing, (≡ FeOH)(2)UO(2), surface complexes with respective U-Fe coordination distances of ~3.45 and ~4.3 ?. In the presence of phosphate and goethite, the relative amounts of precipitated and adsorbed U(VI) were quantified using linear combinations of the EXAFS spectra of precipitated U(VI) and phosphate-free adsorbed U(VI). A U(VI)-phosphate-Fe(III) oxide ternary surface complex is suggested as the dominant species at pH 4 and total U(VI) of 10 μM or less on the basis of the linear combination fitting, a P shell indicated by EXAFS, and the simultaneous enhancement of U(VI) and phosphate uptake on goethite. A structural model for the ternary surface complex was proposed that included a single phosphate shell at ~3.6 ? (U-P) and a single iron shell at ~4.3 ? (U-Fe). While the data can be explained by a U-bridging ternary surface complex, (≡ FeO)(2)UO(2)PO(4), it is not possible to statistically distinguish this scenario from one with P-bridging complexes also present.  相似文献   

4.
Arsenic sorption onto maghemite potentially contributes to arsenic retention in magnetite-based arsenic removal processes because maghemite is the most common oxidation product of magnetite and may form a coating on magnetite surfaces. Such a sorption reaction could also favor arsenic immobilization at redox boundaries in groundwaters. The nature of arsenic adsorption complexes on maghemite particles, at near-neutral pH under anoxic conditions, was investigated using X-ray absorption fine structure (XAFS) spectroscopy at the As K-edge. X-ray absorption near edge structure spectra indicate that As(III) does notoxidize after 24 h in any of the sorption experiments, as already observed in previous studies of As(III) sorption on ferric (oxyhydr)oxides under anoxic conditions. The absence of oxygen in our sorption experiments also limited Fenton oxidation of As(III). Extended XAFS (EXAFS) results indicate that both As(III) and As(V) form inner-sphere complexes on the surface of maghemite, under high surface coverage conditions (approximately 0.6 to 1.0 monolayer), with distinctly different sorption complexes for As(III) and As(V). For As(V), the EXAFS-derived As-Fe distance (approximately 3.35 +/- 0.03 A) indicates the predominance of single binuclear bidentate double-corner complexes (2C). For As(III), the distribution of the As-Fe distance suggests a coexistence of various types of surface complexes characterized by As-Fe distances of approximately 2.90 (+/-0.03) A and approximately 3.45 (+/-0.03) A. This distribution can be interpreted as being due to a dominant contribution from bidentate binuclear double-corner complexes (2C), with additional contributions from bidentate mononuclear edge-sharing (2E) complexes and monodentate mononuclear corner-sharing complexes (1V). The present results yield useful constraints on As(V) and As(III) adsorption on high surface-area powdered maghemite, which may help in modeling the behavior of arsenic at the maghemite-water interface.  相似文献   

5.
Incorporation of Eu(III) into hydrotalcite: a TRLFS and EXAFS study   总被引:1,自引:0,他引:1  
The behavior of radionuclides in the environment (geo-, hydro-, and biosphere) is determined by interface reactions like adsorption, ion exchange, and incorporation processes. Presently, operational gross parameters for the distribution between solution and minerals are available. For predictive modeling of the radionuclide mobility in such systems, however, individual reactions and processes need to be localized, characterized, and quantified. A prerequisite for localization and clarification of the concerned processes is the use of modern advanced analytical and speciation methods, especially spectroscopy. In this study, Eu(III) was chosen as an analogue for trivalent actinides to identify the different species that occur by the Ln(III)/hydrotalcite interaction. Therefore, Eu(III) doped Mg-Al-Cl-hydrotalcite was synthesized and investigated by TRLFS, EXAFS, and XRD measurements. Two different Eu/hydrotalcite species were obtained. The minor part of the lanthanide is found to be inner-sphere sorbed onto the mineral surface, while the dominating Eu/hydrotalcite species consists of Eu(III) that is incorporated into the hydrotalcite lattice. Both Eu/hydrotalcite species have been characterized by their fluorescence emission spectra and lifetimes. Structural parameters of the incorporated Eu(III) species determined by EXAFS indicate a coordination number of 6.6 +/- 1.3 and distances of 2.41 +/- 0.02 A for the first Eu-OH shell.  相似文献   

6.
Chromate mobility, reactivity, and bioavailability in soil environments are affected by adsorption reactions on iron oxide minerals, but the adsorption mechanisms remain controversial. In this study, we employed in situ attenuated total reflectance Fourier transform infrared spectroscopy and theoretical frequency calculations to characterize chromate adsorption on 2-line ferrihydrite. The effects of pH, aqueous chromate concentration, ionic strength, and deuterium exchange were investigated. Results suggest the formation of monodentate and bidentate surface complexes. It was determined that monodentate complexes are dominant at low surface coverage and pH ≥ 6.5 and that bidentate complexes form at high surface coverage and pH < 6. Deuterium exchange experiments indicated that the inner-sphere complexes are not protonated. Difference spectra revealed that monodentate complexes are particularly susceptible to ionic strength effects under acidic conditions.  相似文献   

7.
Sequestration of Ni(II) on diatomite as a function of time, pH, and temperature was investigated by batch, XPS, and EXAFS techniques. The ionic strength-dependent sorption at pH < 7.0 was consistent with outer-sphere surface complexation, while the ionic strength-independent sorption at pH = 7.0-8.6 was indicative of inner-sphere surface complexation. EXAFS results indicated that the adsorbed Ni(II) consisted of ~6 O at R(Ni-O) ≈ 2.05 ?. EXAFS analysis from the second shell suggested that three phenomena occurred at the diatomite/water interface: (1) outer-sphere and/or inner-sphere complexation; (2) dissolution of Si which is the rate limiting step during Ni uptake; and (3) extensive growth of surface (co)precipitates. Under acidic conditions, outer-sphere complexation is the main mechanism controlling Ni uptake, which is in good agreement with the macroscopic results. At contact time of 1 h or 1 day or pH = 7.0-8.0, surface coprecipitates occur concurrently with inner-sphere complexes on diatomite surface, whereas at contact time of 1 month or pH = 10.0, surface (co)precipitates dominate Ni uptake. Furthermore, surface loading increases with temperature increasing, and surface coprecipitates become the dominant mechanism at elevated temperature. The results are important to understand Ni interaction with minerals at the solid-water interface, which is helpful to evaluate the mobility of Ni(II) in the natural environment.  相似文献   

8.
Formation of ternary complexes between arsenic (As) oxyanions and ferric iron (Fe) complexes of humic substances (HS) is often hypothesized to represent a major mechanism for As-HS interactions under oxic conditions. However, direct evidence for this potentially important binding mechanism is still lacking. To investigate the molecular-scale interaction between arsenate, As(V), and HS in the presence of Fe(III), we reacted fulvic and humic acids with Fe(III) (1 wt %) and equilibrated the Fe(III)-HS complexes formed with As(V) at pH 7 (molar Fe/As ~10). The local (<5 ?) coordination environments of As and Fe were subsequently studied by means of X-ray absorption spectroscopy. Our results show that 4.5-12.5 μmol As(V)/g HS (25-70% of total As) was associated with Fe(III). At least 70% of this As pool was bound to Fe(III)-HS complexes via inner-sphere complexation. Results obtained from shell fits of As K-edge extended X-ray absorption fine structure (EXAFS) spectra were consistent with a monodentate binuclear ((2)C) and monodentate mononuclear ((1)V) complex stabilized by H-bonds (R(As-Fe) = 3.30 ?). The analysis of Fe K-edge EXAFS spectra revealed that Fe in Fe(III)-HS complexes was predominantly present as oligomeric Fe(III) clusters at neutral pH. Shell-fit results complied with a structural motif in which three corner-sharing Fe(O,OH)(6) octahedra linked by a single μ(3)-O bridge form a planar Fe trimer. In these complexes, the average Fe-C and Fe-Fe bond distances were 2.95 ? and 3.47 ?, respectively. Our study provides the first spectroscopic evidence for ternary complex formation between As(V) and Fe(III)-HS complexes, suggesting that this binding mechanism is of fundamental importance for the cycling of oxyanions such as As(V) in organic-rich, oxic soils and sediments.  相似文献   

9.
The oxidation of arsenite (As(III)) by manganese oxide is an important reaction in both the natural cycling of As and the development of remediation technology for lowering the concentration of dissolved As(III) in drinking water. This study used both a conventional stirred reaction apparatus and extended X-ray absorption fine structure (EXAFS) spectroscopy to investigate the reactions of As(III) and As(V) with synthetic birnessite (MnO2). Stirred reactor experiments indicate that As(III) is oxidized by MnO2 followed by the adsorption of the As(V) reaction product on the MnO2 solid phase. The As(V)-Mn interatomic distance determined by EXAFS analysis for both As(III)- and As(V)-treated MnO2 was 3.22 A, giving evidence for the formation of As(V) adsorption complexes on MnO2 crystallite surfaces. The most likely As(V)-MnO2 complex is a bidentate binuclear corner sharing (bridged) complex occurring at MnO2 crystallite edges and interlayer domains. In the As(III)-treated MnO2 systems, reductive dissolution of the MnO2 solid during the oxidation of As(III) caused an increase in the adsorption of As(V) when compared with As(V)-treated MnO2. This suggested that As(III) oxidation caused a surface alteration, creating fresh reaction sites for As(V) on MnO2 surfaces.  相似文献   

10.
Cesium adsorption on the clay minerals vermiculite and montmorillonite is described as a function of surface coverage using extended X-ray adsorption fine structure spectroscopy (EXAFS). Cesium (Cs) possessed a variable coordination environment consisting of Cs-O distances between 3.2 and 4.3 A; however, disorder typical of the Cs coordination environments prevented the resolution of all oxygen shells. On the basis of the influence of Cs loading and exchangeability on this structural arrangement, we could recognize both inner-sphere and outer-sphere adsorption complexes. The shorter Cs-O bond distance belongs to outer-sphere complexes typical of hydrated ions. In inner-sphere complexes, partially or fully dehydrated Cs coordinates directly to siloxane groups of the clay minerals forming longer Cs-O bonds. The inner-sphere adsorption complexes may have occurred within the interlayer or at frayed edge sites and were less extractable than the outer-sphere complexed Cs. Both coordination number ratios and linear combination fitting of EXAFS spectra were useful in estimating the fractions of inner-sphere and outer-sphere adsorption complexes. Our results show that X-ray absorption spectroscopy (XAS), and particularly EXAFS, is a valuable technique for exploring the type of Cs binding in environmental samples.  相似文献   

11.
The complexation of iron(III) to soil organic matter is important for the binding of trace metals in natural environments because of competition effects. In this study, we used extended X-ray absorption fine structure (EXAFS) spectroscopy to characterize the binding mode for iron(III) in two soil samples from organic mor layers, one of which was also treated with iron(III). In most cases the EXAFS spectra had three significant contributions, inner-core Fe-O/N interactions at about 2.02(2) A, Fe-C interactions in the second scattering shell at 3.00(4) A, and a mean Fe-Fe distance at 3.37(3) A. One untreated sample showed features typical for iron (hydr)oxides; however, after treatment of iron(III) the EXAFS spectrum was dominated by organically complexed iron. The presence of a Fe-Fe distance in all samples showed that the major part of the organically complexed iron was hydrolyzed, most likely in a mixture of complexes with an inner core of (O5Fe)2O and (O5Fe)3O. These results were used to constrain a model for metal-humic complexation, the Stockholm Humic Model (SHM). The model was able to describe iron(III) binding verywell at low pH considering only one dimeric iron(III)-humic complex. The competition effect on trace metals was also well described.  相似文献   

12.
Iron(III) competes with trace metals for binding sites on organic ligands. We used X-ray absorption fine structure (EXAFS) spectroscopy to determine the binding mode and oxidation state of iron in solutions initially containing only iron(III) and fulvic acid at pHs 2 and 4. EXAFS spectra were recorded at different times after sample preparation. Iron was octahedrally configured with inner-sphere Fe-O interactions at 1.98-2.10 A, depending on the oxidation state of iron. Iron(III) formed complexes with fulvic acid within 15 min. Iron(III) was reduced to iron(II) with time at pH 2, whereas no significant reduction occurred at pH 4. No signs of dimeric/trimeric hydrolysis products were found in any of the solution samples (<0.45 microm). However, the isolated precipitate of the pH 2 sample (>0.45 microm) showed Fe...Fe distances, indicating the presence of tightly packed iron(III) trimers and/or clusters of corner-sharing octahedra. It is suggested that the binding mode of iron(III) to fulvic acid at low pH may be phase-dependent: in solution mononuclear complexes predominate, whereas in the solid phase hydrolyzed polynuclear iron(III) complexes form, even at very low pH values. The observed pH dependence of iron(III) reduction was consistent with expected results based on thermodynamic calculations for model ligands.  相似文献   

13.
Density functional theory (DFT) calculation is carried out to investigate the structures, (19)F and (27)Al NMR chemical shifts of aqueous Al-F complexes and their water-exchange reactions. The following investigations are performed in this paper: (1) the microscopic properties of typical aqueous Al-F complexes are obtained at the level of B3LYP/6-311+G**. Al-OH(2) bond lengths increase with F(-) replacing inner-sphere H(2)O progressively, indicating labilizing effect of F(-) ligand. The Al-OH(2) distance trans to fluoride is longer than other Al-OH(2) distance, accounting for trans effect of F(-) ligand. (19)F and (27)Al NMR chemical shifts are calculated using GIAO method at the HF/6-311+G** level relative to F(H(2)O)(6)(-) and Al(H(2)O)(6)(3+) references, respectively. The results are consistent with available experimental values; (2) the dissociative (D) activated mechanism is observed by modeling water-exchange reaction for [Al(H(2)O)(6-i)F(i)]((3-i)+) (i = 1-4). The activation energy barriers are found to decrease with increasing F(-) substitution, which is in line with experimental rate constants (k(ex)). The log k(ex) of AlF(3)(H(2)O)(3)(0) and AlF(4)(H(2)O)(2)(-) are predicted by three ways. The results indicate that the correlation between log k(ex) and Al-O bond length as well as the given transmission coefficient allows experimental rate constants to be predicted, whereas the correlation between log k(ex) and activation free energy is poor; (3) the environmental significance of this work is elucidated by the extension toward three fields, that is, polyaluminum system, monomer Al-organic system and other metal ions system with high charge-to-radius ratio.  相似文献   

14.
Mechanisms of selenate adsorption on iron oxides and hydroxides   总被引:2,自引:0,他引:2  
Selenate (SeO4(2-)) is an oxyanion of environmental importance because of its toxicity to animals and its mobility in the soil environment. It is known that iron(III) oxides and hydroxides are important sorbents for SeO4(2-) in soils and sediments, but the mechanism of selenate adsorption on iron oxides has been the subject of intense debate. Our research employed Extended X-ray absorption fine structure and attenuated total reflectance-Fourier transform infrared spectroscopies to determine SeO4(2-) bonding mechanisms on hematite, goethite, and hydrous ferric oxide (HFO). It was learned that selenate forms only inner-sphere surface complexes on hematite but forms a mixture of outer- and inner-sphere surface complexes on goethite and HFO. This continuum of adsorption mechanisms is strongly affected by both pH and ionic strength. These results suggest that adsorption experiments should be conducted on several different iron oxides and over a wide range of reaction conditions to accurately assess the reactivity of oxyanions on iron oxides.  相似文献   

15.
Surface complexation of copper(II) on soil particles: EPR and XAFS studies   总被引:1,自引:0,他引:1  
The interactions of transition metals with natural systems play an important role in the mobility and the bioavailability of these metals in soils. In this study, the adsorption of copper(II) onto natural soil particles was studied as a function of pH and metal concentration. The retention capacity of soil particles was determined at pH 6.2 to be equal to 6.7 mg of copper/g of solid. The Langmuir and Freundlich isotherm equations were then used to describe the partitioning behavior of the system at different pH values. A combination of EPR, extended X-ray absorption fine structure (EXAFS), and X-ray absorption near-edge structure (XANES) spectroscopies was used to probe the Cu atomic environment at the soil particles/aqueous interface. The spectroscopic study revealed that copper(II) ions are held in inner-sphere surface complexes. It also revealed that Cu was in an octahedral coordination with first-shell oxygen atoms. A weak tetragonal distortion was pointed out due to the Jahn-Teller effect, with a mean Cu-Oequatorial bond distance of 1.96 A and a Cu-Oaxial bond distance of 2.06 A. A detailed analysis of the spectroscopic data suggested that Cu(II) was bonded to organic matter coated onto the mineral fraction of soil particles.  相似文献   

16.
Aluminum is acutely toxic, and elevated concentrations of dissolved Al can have detrimental effects on both terrestrial and aquatic ecosystems. Robust analytical methods that can determine environmentally relevant Al fractions accurately and efficiently are required by the environmental monitoring community. A simple, robust passive sampling method, the diffusive gradients in thin films (DGT) technique, was evaluated for the measurement of dissolved Al species in freshwater and marine water using either Chelex-100 or Metsorb (a titanium dioxide-based binding agent) as the adsorbent. Mass vs time DGT deployments at pH 5.05 (Al(3+) and Al(OH)(2+) dominate) and 8.35 (Al(OH)(4)(-) dominates) demonstrated linear uptake of Al (R(2) = 0.989 and 0.988, respectively) for Metsorb. Similar deployments of Chelex-DGT showed linear uptake at pH 5.05 (R(2) = 0.994); however, at pH 8.35 the mass of Al accumulated was 40-70% lower than predicted, suggesting that Chelex-100 is not suitable for Al measurements at high pH. The Metsorb-DGT measurement was independent of pH (5.0-8.5) and ionic strength (0.001-0.7 mol L(-1) NaNO(3)), whereas the Chelex-DGT measurement was only independent of ionic strength at pH 5.0. At pH 8.4, increasing ionic strength led to considerable underestimation (up to 67%) of Al concentration. Deployments of Metsorb-DGT (up to 4 days) in synthetic freshwater (pH range 5.4-8.1) and synthetic seawater (pH 8.15) resulted in linear mass uptakes, and the concentration measured by DGT agreed well with solution concentrations. Conversely, deployment of Chelex-DGT in synthetic seawater and freshwater (pH ≥7.7 Al(OH)(4)(-) dominant species) resulted in a decrease in accumulated mass with increasing deployment time. In situ field evaluations in fresh, estuarine, and marine waters confirmed that Metsorb-DGT was more accurate than Chelex-DGT for the measurement of dissolved Al in typical environmental waters.  相似文献   

17.
Carbonate dramatically affects the adsorption of uranium (U(VI)) onto iron hydroxides and its mobility in the natural environment. Batch tests, zeta potential measurements, and Fourier transform infrared (FTIR) spectroscopic studies were utilized to characterize the nature of U(VI) adsorption on ferrihydrite. Adsorption isotherms demonstrated that carbonate had a negative effect on U(VI) adsorption on ferrihydrite at pH > 6. Zeta potential measurements indicated that U(VI) was adsorbed as a cationic species (SO-UO2+) in the absence of carbonate and as anionic U(VI) complexes in the presence of carbonate at neutral pH. FTIR spectroscopic measurement of adsorbed U(VI) suggested that it was retained as uranyl carbonate complexes in the presence of carbonate. An increase in carbonate concentration caused a shift in the antisymmetric stretching vibration of the uranyl (UO2(2+)) U-O bond toward lower wavenumbers, which indicated an increasing carbonate effect in the adsorbed uranyl carbonate complexes. The adsorbed U(VI) species were successfully incorporated into a surface complexation model to describe the adsorption of U(VI) by ferrihydrite from artificial solutions and contaminated water.  相似文献   

18.
Trihydroxamate siderophores have been proposed for use as mediators of actinide and heavy metal mobility in contaminated subsurface zones. These microbially produced ligands, common in terrestrial and marine environments, recently have been derivatized synthetically to enhance their affinity for transuranic metal cations. However, the interactions between these synthetic derivative and adsorbed trace metals have not been characterized. In this paper we compare a natural siderophore, desferrioxamine-B (DFO-B), with its actinide-specific catecholate derivative, N-(2,3-dihydroxy-4-(methylamido)benzoyl)desferrioxamine-B (DFOMTA), as to their effect on the adsorption of Pb(II) and Eu(III) by goethite and boehmite. In the presence of 240 microM DFO-B, a strongly depleting effect on Eu(III) adsorption by goethite and boehmite occurred above pH 6. By contrast, almost total removal of Eu(III) from solution in the neutral to slightly acidic pH range was observed in the presence of either 10 or 100 microM DFOMTA, due primarilyto the formation of metal-DFOMTA precipitates. Addition of DFOMTA caused an increase in Pb(II) adsorption by goethite below pH 5, but a decrease above pH 5, such that the Pb(II) adsorption edge in the presence of DFOMTA strongly resembled the DFOMTA adsorption envelope, which showed a maximum near pH 5 and decreasing adsorption toward lower and higher pH.  相似文献   

19.
Uranium and arsenic often co-occur in nature, for example, in acid mine drainage waters. Interaction with arsenic is thus important to understand uranium mobility in aqueous solutions. For the present study, EXAFS spectroscopy was used to investigate the formation and identify the structure of aqueous uranyl arsenate species at pH 2. The nearest U-As distance of 3.39 ?, observed in shock-frozen liquid samples, was significantly shorter than that observed in solid uranyl arsenate minerals. The shorter bond length indicated that the solution contained a bidentate-coordinated species, in contrast to the monodentate coordination in solid uranyl arsenate minerals. The U-As coordination number of 1.6 implied that two uranyl arsenate species with U:As ratios of 1:1 and 1:2 formed in nearly equal proportions and that the hydrated uranyl ion was present only as a minor component. The two uranyl arsenate species could not be differentiated spectroscopically, since their U-As distances were equal. A comparison based on DFT modeling indicated for both the 1:1 and the 1:2 species, that the bidentate arsenates were bound to uranium with one of the binding oxygen atoms being protonated. Based on the present spectroscopic study, the two species that will have to be considered in acidic uranium-arsenic-rich solutions are thus UO(2)H(2)AsO(4)(+), and UO(2)(H(2)AsO(4))(2)(0).  相似文献   

20.
The time dependent changes of Lu speciation (used as Am(III) homologue), initially sorbed onto 2-line ferrihydrite at pH 5.9, during tempering (70 degrees C) to stable crystalline transformation products, goethite and hematite, is studied. Microscopies (AFM, SEM), XRD and FTIR spectroscopy confirm transformation to both goethite and hematite, with a predominance of hematite. XRD investigation of another transformation series at pH 8.0 (75 degrees C, [Lu(III)initial] 7 times higher) shows that the cell volume of hematite increases, suggesting the incorporation of Lu in the crystal structure. Extended X-ray absorption fine structure (EXAFS) (pH 5.9 series, 70 degrees C) reveals a shortening of the Lu-O bond distance and an increase in asymmetry of the first shell with increasing tempering time in the intermediate temper time samples. The intensity of the second peak in the Fourier transform (FT) of the EXAFS increases and splits into two components. The EXAFS data of the end product can be modeled well using a hematite-like cluster, with an isotropic expansion of distances to account for incorporation of Lu into the hematite structure. These results demonstrate that the Lu is incorporated in the crystal lattice of the transformation product, as opposed to being occluded or remaining a sorbed species on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号