首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Carbonyl complexes of Cr, Mo and W have been studied as soluble catalysts for the hydrogenation of methyl sorbate and of methyl esters from soybean oil. With methyl sorbate, relative catalytic activity decreased in the approximate order: mesitylene-Mo(CO)3, cycloheptatriene-Mo(CO)3, cycloheptatriene-Cr(CO)3, bicyclo (2,2,1) hepta-2,5-diene-Mo(CO)4, chlorobenzene-Cr(CO)3, methyl benzoate-Cr(CO)3, mesitylene-W(CO)3, benzene-Cr(CO)3, toluene-Cr(CO)3, mesitylene-Cr(CO)3, and hexamethylbenzene-Cr(CO)3. Order of catalytic activity was related to thermal stability of the complexes during hydrogenation. With mesitylene-M(CO)3 complexes, selectivity varied in the order Cr>Mo>W. Under certain conditions the mesitylene complexes of W, Cr and Mo reduced methyl sorbate respectively to methyl 2-, 3-, and 4-hexenoates as main products. The more active and thermally stable Cr(CO)3 complexes catalyzed effectively the hydrogenation of linoleate and linolenate in soybean oil esters with little or no stearate formation. The hydrogenated products formed with the benzoate complex at 165–175 C contained 50–67% monoene, 18–30% diene, 2–7% conjugated diene, and only 3–7%trans unsaturation. Linolenate-linoleate selectivity values varied from 3 to 5 and linoleate-oleate selectivity from 7 to 80. Monoene fractions had 40–50% of the double bond in the C-9 position; the rest of the unsaturation was distributed mainly between the C-10 and C-12 positions. Conjugation is apparently an intermediate step in the hydrogenation of linoleate and linolenate. The Cr(CO)3 complexes are unique in catalyzing the hydrogenation of polyunsaturated fatty esters to monounsaturated fatty esters of lowtrans content. Presented at AOCS-AACC Joint Meeting, Washington, D.C. April, 1968. No. Utiliz. Res. Dev. Div., ARS, USDA.  相似文献   

2.
The use of Cr(CO)6 was investigated to convert polyunsaturated fats intocis unsaturated products. With methyl sorbate, the same order of selectivity for the formation ofcis-3-hexenoate was demonstrated for Cr(CO)6 as for the arene-Cr(CO)3 complexes. With conjugated fatty esters, the stereoselectivity of Cr(CO)6 toward thetrans, trans diene system was particularly high in acetone. However, this solvent was not suitable at elevated temperatures required to hydrogenatecis, trans- andcis, cis-conjugated dienes (175 C) and nonconjugated soybean oil (200 C). Reaction parameters were analyzed statistically to optimize hydrogenation of methyl sorbate and soybean oil. To achieve acceptable oxidative stability, it is necessary to reduce the linolenate constituent of soybean oil below 1–3%. When this is done commercially with conventional heterogenous catalysts, the hydrogenated products contain more than 15%trans unsaturation. By hydrogenating soybean oil with Cr(CO)6 (200 C, 500 psi H2, 1% catalyst in hexane solution), the product contains less than 3% each of linolenate andtrans unsaturation. Recycling of Cr(CO)6 catalyst by sublimation was carried through three hydrogenations of soybean oil, but, about 10% of the chromium was lost in each cycle by decomposition. The hydrogenation mechanism of Cr(CO)6 is compared with that of arene-Cr(CO)3 complexes. Presented in part at Seventh Conference on Catalysis in Organic Syntheses, Chicago, Illinois, June 5–7, 1978.  相似文献   

3.
Polyunsaturated fatty acid methyl esters of soybean oil (MeSBO) were selectively conjugated as a means of increasing the linolenate selectivity of various homogeneous and heterogeneous hydrogenation catalysts. Kinetics of the conjugation reaction in various solvents indicated that linolenate conjugated 5–8 times faster than linoleate. Selective conjugation of MeSBO with potassiumt-butoxide in dipolar solvents resulted in an increase in linolenate hydrogenation selectivity to 7–8 with Ni and Pd heterogeneous catalysts, and to 7–10 with homogeneous and heterogeneous chromium carbonyl catalysts.Trans-unsaturation in the hydrogenated products was only 1–3% with the chromium carbonyl catalysts, in contrast to 30–39% with the heterogeneous metal catalysts. Triglycerides were readily converted to partial glycerides andt-butyl esters with the potassiumt-butoxide reagent. Presented at the AOCS North Central Section Symposium, March 1980.  相似文献   

4.
Mechanistic and kinetic studies of Pd-catalyzed hydrogenation at atmospheric pressure and 30–100 C were carried out with methyl sorbate, methyl linoleate and conjugated linoleate. Homogeneous Pd catalysts and particularly Pd-acetylacetonate [Pd(acac)2] were significantly more selective than Pd/C in the hydrogenation of sorbate to hexanoates, mainlytrans-2-hexenoate. Relative rate constants for the different parallel and consecutive reactions, determined by computer simulation, indicated that the low diene selectivity of Pd/C can be dattributed to a significant direct reduction of sorbate to hexanoate. The similar behavior of PdCl2 to that of Pd/C suggests that Pd(II) was initially reduced to Pd(O). Valence stabilization of PbCl2 by adding DMF or a mixture of Ph3P and SnCl2 increased the diene selectivity but decreased the activity. Stabilization of Pd(acac)2 with triethylaluminum (Ziegler catalyst) resulted in increased activity but decreased selectivity. The kinetics of methyl linoleate hydrogenation showed that although Pd(acac)2 was only half as active as Pd/C, their respective diene selectivity was similar (10.4 and 9.6). The much greater reactivity of conjugated compared with unconjugated linoleate toward Pd(acac)2 suggests the possible formation of conjugated dienes as intermediates that are rapidly reduced and not detected in the lipid phase during hydrogenation.  相似文献   

5.
A silica-bonded complex was prepared by reacting polyphenylsiloxane with silylated Chromosorb and then with Cr(CO)6. This complex catalyzed stereoselective hydrogenation of sorbate tocis-3-hexenoate. Soybean methyl esters were hydrogenated at 210 C in cyclohexane to form products high incis unsaturation. The recovered catalyst could be recycled once with methyl sorbate. IR showed decreased Cr(CO)3 in the recovered catalysts, and the hydrogenation products contained inactive Cr.  相似文献   

6.
Hydrogenation of linseed and soybean methyl esters was achieved at 100–180C, 100–1000 psi H2 and 0.05–0.25 moles catalyst per mole of ester. The relative activity of metal acetylacetonates in decreasing order was: nickel (III), cobalt (III), copper (II) and iron (III). Reduction occurred readily in methanol solution but only slowly in dimethylformamide and acetic acid. No reduction occurred in the absence of solvents. Soybean oil was also hydrogenated rapidly with nickel (III) acetylacetonate in methanol, but in this system the triglycerides were converted to methyl esters. Nickel (III) acetylacetonate was the most selective catalyst toward linolenate hydrogenation. Methyl linoleate and linolenate hydrogenated with nickel(III) acetylacetonate were fractionated into monoenes, dienes and trienes. Thecis monoenes separated in 62 to 68% yield had double bonds in the original position. The remainingtrans monoenes had extensively scattered unsaturation. The dienes and trienes showed no conjugation, but some of the double bonds in the dienes were not conjugatable with alkali. Little stearate was formed. Presented at AOCS meeting in Chicago, 1964 No. Util. Res. and Dev. Div. ARS, USDA  相似文献   

7.
To compare a continuous hydrogenation system with batch hydrogenation, soybean oil was treated with Pd and Ni catalysts in a fixed-bed system under conditions that gave trickle flow. The influence of processing variables such as space velocity, pressure, temperature and hydrogen flow on the selectivity, specific isomerization and the activity was investigated. Both the Pd and Ni catalysts gave significantly lower specific isomerization(trans isomer per drop in Iodine Value) when compared to reported values for batch hydrogenation with similar type catalysts. The linolenate and linoleate selectivities were also significantly lower. Heterogenized homogeneous Pd-on-polystyrene catalyst gave lower specific isomerization formation and higher selectivity than carbon-supported Pd catalyst at same conditions. This work indicates that Pd-on-styrene, Pd-on-carbon and extruded Ni catalysts, in fixed-bed continuous hydrogenation can produce soybean oil of desirable composition after further optimization.  相似文献   

8.
The need for a selective catalyst to hydrogenate linolenate in soybean oil has prompted our continuing study of various model triunsaturated fats. Hydrogenation of methylβ-eleostearate (methyltrans,trans,trans-9,11,13-octadecatrienoate) with Cr(CO)3 complexes yielded diene products expected from 1,4-addition (trans-9,cis-12- andcis-10,trans-13-octadecadienoates). Withα-eleostearate (cis,trans,trans-9,11,13-octadecatrienoate), stereoselective 1,4-reduction of thetrans,trans-diene portion yielded linoleate (cis,cis-9,12-octadecadienoate). However,cis,trans-1,4-dienes were also formed from the apparent isomerization ofα- toβ-eleostearate. Hydrogenation of methyl linolenate (methylcis,cis,cis-9,12,15-octadecatrienoate) produced a mixture of isomeric dienes and monoenes attributed to conjugation occurring as an intermediate step. The hydrogenation ofα-eleostearin in tung oil was more stereoselective in forming thecis,cis-diene than the corresponding methyl ester. Hydrogenation of linseed oil yielded a mixture of dienes and monoenes containing 7%trans unsaturation. We have suggested how the mechanism of stereoselective hydrogenation with Cr(CO)3 catalysts can be applied to the problem of selective hydrogenation of linolenate in soybean oil. No. Market. Nutr. Res. Div., ARS, USDA.  相似文献   

9.
Different Rh complex catalysts were compared for the hydrogenation of methyl sorbate and linoleate in the absence of solvents. At 100 C and 1 atm H2 the following complexes, RhCl(Ph3 P)3 (Ph= phenyl), [RhClNBD]2 (NBD=norbornadiene) and RhH(CO)(Ph3P)3, produced mainly methyltrans-2-hexenoate (34 to 56%). Their diene selectivity was not particularly high as they produced 14 to 41% methyl hexanoate. With RhCl(Ph3 P)3 constant ratios between rates of methyl sorbate disappearance and formation of methyltrans-2- andtrans-3-hexenoate indicate approximately the same activation energy for 1,2-addition of H2 on the Δ4 double bond of methyl sorbate and for 1,4-addition to this substrate. In the hydrogenation of methyl linoleate with RhCl(Ph3 P)3, the kinetic curves were simulated by a scheme in which 1,2-reduction was more than twice as important as 1,4-addition of H2 via conjugated diene intermediates. Although the complexes RhCl(CO)(Ph3 P)3 and [Rh(NBD)(diphos)]+PF6 (diphos=diphosphine) were inactive in the hydrogenation of methyl sorbate, they catalyzed the hydrogenation of methyl linoleate at 100 C and 1 atm. Catalyst inhibition apparently was caused by stronger complex formation with methyl sorbate than with the conjugated dienes formed from methyl linoleate.  相似文献   

10.
Some palladium complexes containing coordinated triphenylphosphine or arsine have been found to be effective and selective catalysts in the homogeneous hydrogenation of soybean oil methyl ester. The characteristic features of the catalysis are 1) isomerization ofcis double bonds totrans double bonds, 2) migration of isolated double bonds to form conjugated dienes, 3) selective hydrogenation of poly olefines to mono olefines without hydrogenation of mono olefine, 4) ester exchange of methyl ester to butyl ester, 5) effective hydrogenation and isomerization by methanol in the absence of elemental hydrogen. The catalytic activity of a variety of palladium complexes decreases in the following order: (ϕ3P)2PdCl2+SnCl2·2H2O>(ϕ3P)2PdCl2+GeCl2>(ϕ3P)2Pd(CN)2> (ϕ3As)2Pd(CN)2>(ϕ3P)2PdCl2≫(ϕ3As)2PdCl2. However, neither K2PdCl4 with SnCl2·2H2O nor (ϕ3P)2Pd(SCN)2 was effective for hydrogenation. The hydrogenation and isomerization of soybean oil methyl ester have been examined under various conditions using a mixture of (ϕ3P)2PdCl2 and SnCl2·2H2O. Under nitrogen pressure, in benzene and methanol as a solvent, both isomerization and hydrogenation of soybean oil methyl ester proceeded less effectively than under hydrogen pressure. This work was done under contract with the USDA. Earlier articles in the series are: I, Inorg. Chem.4, 1618 (1965): II, Proceedings of the Symposium on Coordination Chemistry (Tihany, Hungary, 1964), Edited by M. T. Beck, Budapest, 1965; III, JAOCS43, 337 (1966); IV, Advances in Chemistry Series, American Chemical Society, in press.  相似文献   

11.
Iron pentacarbonyl is a powerful isomerization agent of unsaturated fatty esters. Highly conjugated fats are obtained when polyunsaturated fatty esters are treated with an excess Fe(CO)5 to form complexes followed by decomposition of the complexes with FeCl3. Iron tricarbonyl complexes were prepared in 80 to 95% yields from methyl linoleate, linolenate and polyunsaturated fatty esters of soybean, linseed and safflower oils by heating at 180–185C with 2 moles Fe(CO)5 per mole ester under nitrogen pressure. Decomposition of these complexes with FeCl3 resulted in 90 to 97% conjugation of the polyunsaturated fatty esters mainly in the alltrans configuration. Isolatedtrans unsaturation reached levels of 18 to 30%. Methyl oleate yielded 74%trans unsaturation but no complex of iron carbonyl was obtained. Presented in part at AOCS meeting in Houston, 1965. No. Utiliz. Res. Dev. Div., ARS, USDA.  相似文献   

12.
cis-Bond-producing chromium carbonyl catalysts were prepared by complexing conventional or macroreticular, styrene-divinylbenzene copolymers or cross-linked poly (vinyl benzoate) with Cr(CO)6. With one exception, these polymer-Cr(CO)3 catalysts were as selective as the corresponding homogeneous arene-Cr(CO)3 complexes for the formation ofcis-monoenes from methyl sorbate and from conjugated, polyunsaturated fatty esters in cyclohexane. Although several of the polymer catalysts were very active when fresh, they all lost activity on recycling. They could not be recycled more than two times before a marked decrease in activity occurred due to loss of Cr, as shown by elemental analysis and infrared absorption in the recovered catalyst. Thermal analysis indicated instability of the polymer complexes at hydrogenation temperatures.  相似文献   

13.
The rate of hydrogenation of soybean oil with either copper chromite or nickel catalysts increased more than a hundredfold with the aid of ultrasonication. In a continuous reaction system, the selectivity with copper catalyst for linolenate reduction was somewhat lower when ultrasonic energy was applied than when not applied. With ultrasonic energy, 87% hydrogenation of linolenate in soybean oil was obtained in 9 sec at 115 psig H2 with 1% copper chromite at 181 C and 77% linolenate hydrogenation with 0.025% nickel. Without ultrasonic energy, only 59% linolenate hydrogenation was obtained in 240 sec with copper chromite at 198 C and 500 psig H2 and 68% linolenate hydrogenation in 480 sec with nickel at 200 C and 115 psig H2. This innovation may offer an important advantage in increasing the activity of commercial catalysts, particularly copper chromite, for fats and oil hydrogenation.  相似文献   

14.
Catalytic hydrogenation of linoleic acid on nickel,copper, and palladium   总被引:1,自引:0,他引:1  
The catalytic activity and selectivity for hydrogenation of linoleic acid were studied on Ni, Cu, and Pd catalysts. A detailed analysis of the reaction product was performed by a gas-liquid chromatograph, equipped with a capillary column, and Fourier transform-infrared spectroscopy. Geometrical and positional isomerization of linoleic acid occurred during hydrogenation, and many kinds of linoleic acid isomers (trans-9,trans-12; trans-8,cis-12 orcis-9,trans-13; cis-9,trans-12; trans-9,cis-12 andcis-9,cis-12 18∶2) were contained in the reaction products. The monoenoic acids in the partial hydrogenation products contained eight kinds of isomers and showed different isomer distributions on Ni, Cu, and Pd catalysts, respectively. The positional isomers of monoenoic acid were produced by double-bond migration during hydrogenation. On Ni and Pd catalysts, the yield ofcis-12 andtrans-12 monoenoic acids was larger than that ofcis-9 andtrans-9 monoenoic acids. On the contrary, the yield ofcis-9 andtrans-9 monoenoic acids was larger than that ofcis-12 andtrans-12 monoenoic acids on Cu catalyst. From these results, it is concluded that the double bond closer to the methyl group (Δ12) and that to the carboxyl group (Δ9) show different reactivity for hydrogenation on Ni, Cu, and Pd catalysts. Monoenoic acid formation was more selective on Cu catalyst than on Ni and Pd catalysts.  相似文献   

15.
Supported SiO2 catalysts were studied for the partial hydrogenation of rapeseed oil-derived fatty acid methyl esters (FAME) for improving its oxidative stability. The effect of metal type: Pt, Pd, and Ni, on catalytic activity and cistrans selectivity was investigated. Hydrogenation activity was studied in terms of turn over frequency (TOF) of C18:3, C18:2, C18:1, and C18:0 FAME. The highest TOF of C18:3, C18:2, and C18:1 was found for Pd catalyst. However, C18:0 TOF of Pt is higher than that of the Pd catalyst. The higher in C18:0 TOF can explain the low selectivity towards trans-monounsaturated FAME of the Pt catalyst, which is due to the subsequent hydrogenation of the intermediate trans-monounsaturated to saturated FAME. On the other hand, Ni showed the lowest TOFs when compared with the Pt and Pd catalysts.  相似文献   

16.
The undesirable flavor reversion properties of soybean oils may be counteracted by selective hydrogenation of the linolenate components. Screening of catalysts for this purpose was accomplished by a standardized laboratory hydrogenation of a refined, bleached soybean oil under atmospheric pressure. A mathematical derivation utilizes analytical chromatographic data to determine linolenate/linoleate reaction rates as a selectivity index SL for a given catalyst. Presented at the AOCS Meeting, Toronto, 1962.  相似文献   

17.
《Journal of Catalysis》2007,245(2):272-278
Pd(II) and Pd(0) catalysts supported onto titanate nanotubes (H2Ti3O7) were prepared by an ion-exchange technique. The catalysts are characterised by narrow size distribution of metal nanoparticles on the external surface of the nanotubes. Pd(II) catalysts show high selectivity toward double-bond migration reaction versus hydrogenation in linear olefins. The catalytic activity exhibits a volcano-type dependence on the metal loading, with the maximum activity observed at ca. 8 wt%. The Pd(II) was shown to be rapidly reduced to Pd(0) by appropriate choice of solvent. Prereduced Pd(0) catalysts were found to be less active toward double-bond migration and more selective toward hydrogenation. The DBM reaction was faster in protic solvents, such as methanol or ethanol.  相似文献   

18.
The influence of substituents on rate constants of the hydrogenation of monoalkylbenzenes by transition metal nanoparticles or by classical heterogeneous catalysts can be rationalized in terms of the Taft rule. A series of the initial reaction rate constants obtained from various competitive toluene/benzene and toluene/monoalkylbenzene hydrogenation experiments catalyzed by transition‐metal nanoparticles prepared in the presence of imidazolium ionic liquids or surfactants [Ir(0), Rh(0) and Ru(0)] or by classical heterogeneous catalysts (PtO2, Rh/C, Rh/Al2O3, Ru/C, Ru/Al2O3 and Pd/C) have been correlated with the Taft equation . Satisfactory correlation coefficients (r) (between 0.96 and 0.99) and positive slopes (ρ) between 0.38 and 0.83 have been obtained. The results clearly show that the reaction constants for the alkyl‐substituents can be expressed by steric factors and are independent of any other non‐steric factors. It is suggested that bulky alkylbenzene substituents, for both transition metal nanoparticles and classical heterogeneous hydrogenation reactions, lower the overall hydrogenation rate, implying a more disturbed transition state compared to the initial state of the hydrogenation (in terms of the Horiuti–Polanyi mechanism). This competitive method is suitable for the estimation of the constant selectivity for couples of alkylbenzenes in which the difference in hydrogenation rates are very high and experimentally difficult to measure and also useful for the design of more selective “nano” and classical catalysts for hydrogenation reactions.  相似文献   

19.
This work is aimed at evaluating the performance of several catalysts in the partial hydrogenation of sunflower oil. The catalysts are composed of noble (Pd and Pt) and base metals (Ni, Co and Cu), supported on both silica and alumina. The following order can be proposed for the effect of the metal on the hydrogenation activity: Pd > Pt > Ni > Co > Cu. At a target iodine value of 70 (a typical value for oleomargarine), the production of trans isomers is minimum for supported nickel catalysts (25.7–32.4 %, depending on the operating conditions). Regarding the effect of the support, Al2O3 allows for more active catalysts based on noble metals (Pd and Pt) and Co, the effect being much more pronounced for Pt. Binary mixtures of catalysts have been studied, in order to strike a balance between catalyst activity and product distribution. The results evidence that Pd/Al2O3–Co/SiO2 mixture has a good balance between activity and selectivity, and leads to a very low production of trans isomers (11.8 %) and a moderate amount of saturated stearic acid (13.5 %). Consequently, the utilization of cobalt‐based catalysts (or the addition of cobalt to other metallic catalysts) could be considered a promising alternative for the hydrogenation of edible oil.  相似文献   

20.
The kinetics of the consecutive hydrogenation reactions 2-ethyl-hexenal → 2-ethyl-hexanal → 2-ethyl-hexanol were studied in the liquid phase in presence of commercial Ni, Pd and Ni-S catalysts. The Pd and Ni-S catalysts were extremely selective with respect to the formation of 2-ethyl-hexanal, while the full reaction sequence was readily catalyzed by nickel. A Langmuir-Hinshelwood model with dissociative hydrogen adsorption was found to be the most probable model, for all three catalysts. The proposal of dissociative hydrogen adsorption of the Ni-S catalyst was supported by an independent gas-phase experiment, using the H2/D2 exchange reaction as a model reaction for the hydrogen àdsorption process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号