首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various techniques of system identification exist that provide a nominal model and an uncertainty bound. An important question is what the implications are for the particular choice of the structure in which the uncertainty is described when dealing with robust stability/performance analysis of a given controller and when dealing with robust synthesis. It is shown that an amplitude-bounded (circular) uncertainty set can equivalently be described in terms of an additive, Youla parameter and ν-gap uncertainty. As a result, the choice of structure does not matter provided that the identification methods deliver optimal uncertainty sets rather than an uncertainty bound around a prefixed nominal model. Frequency-dependent closed-loop performance functions based on the uncertainty sets are again bounded by circles in the frequency domain, allowing for analytical expressions for worst-case performance and for the evaluation of the consequences of uncertainty for robust design. The results can be used to tune optimal experimental conditions in view of robust control design and in the further development of experiment-based robust control design methods.  相似文献   

2.
3.
In iterative schemes of identification and control one of the particular and important choices to make is the choice for a model uncertainty structure, capturing the uncertainty concerning the estimated plant model. Structures that are used in the recent literature encompass e.g. gap metric uncertainty, coprime factor uncertainty, and the Vinnicombe gap metric uncertainty. In this paper, we study the effect of these choices by comparing the sets of controllers that guarantee robust stability for the different model uncertainty bounds. In general these controller sets intersect. However in particular cases the controller sets are embedded, leading to uncertainty structures that are favourable over others. In particular, when restricting the controller set to be constructed as metric-bounded perturbations around the present controller, the so-called double Youla parametrization provides a set of robustly stabilizing controllers that is larger than corresponding sets that are achieved by using any of the other uncertainty structures. This is particularly of interest in controller tuning problems.  相似文献   

4.
In a recent paper a unification of the H2 (LQG) and H control-design problems was obtained in terms of modified algebraic Riccati equations. In the present paper these results are extended to guarantee robust H2 and H performance in the presence of structured real-valued parameter variiations (ΔA, ΔB, ΔC) in the state space model. For design flexibility the paper considers two distinct types of uncertainty bounds for both full- and reduced-order dynamic compensation. An important special case of these results generates H2/H controller designs with guaranteed gain margins.  相似文献   

5.
Economic model predictive control (EMPC) is a model-based control scheme that integrates process control and economic optimization, which can potentially allow for time-varying operating policies to maximize economic performance. The manner in which an EMPC operates a process to optimize economics depends on the process dynamics, which are fixed by the process design. This raises the question of how process and EMPC designs interact. Works which have addressed process and control design interactions for steady-state operation have sought to simultaneously develop process designs and control law parameters to find the most profitable way to operate a process that is able to prevent process constraints from being violated and to optimize capital costs in the presence of disturbances. Because EMPC has the potential to operate a process in a transient fashion, this work first focuses on how EMPC and process design interact in the absence of disturbances. Using small-scale process examples, we seek to understand the fundamental nature of the interactions between EMPC and process design, including how these interactions can impact computational complexity of the controller and the design procedure. We subsequently utilize the insights gained to suggest controller design variables which might be considered as decision variables for a simultaneous process and control design problem when disturbances are considered.  相似文献   

6.
This paper addresses the existence of loop gain-phase shaping (LGPS) solutions for the design of robust digital control systems for SISO, minimum-phase, continuous-time processes with parametric uncertainty. We develop the frequency response properties of LGPS for discrete-time systems using the Δ-transform, a transform method that applies to both continuous-time and discrete-time systems. A theorem is presented which demonstrates that for reasonable specifications there always exists a sampling period such that the robust digital control problem has a solution. Finally, we offer a procedure for estimating the maximum feasible sampling period for LGPS solutions to robust digital control problems.  相似文献   

7.
Rapid growth in world population and recourse limitations necessitate remanufacturing of products and their parts/modules. Managing these processes requires special activities such as inspection, disassembly, and sorting activities known as treatment activities. This paper proposes a capacitated multi-echelon, multi-product reverse logistic network design with fuzzy returned products in which both locations of the treatment activities and facilities are decision variables. As the obtained nonlinear mixed integer programming model is a combinatorial problem, a memetic-based heuristic approach is presented to solve the resulted model. To validate the proposed memetic-based heuristic method, the obtained results are compared with the results of the linear approximation of the model, which is obtained by a commercial optimization package. Moreover, due to inherent uncertainty in return products, demands of these products are considered as uncertain parameters and therefore a fuzzy approach is employed to tackle this matter. In order to deal with the uncertainty, a stochastic simulation approach is employed to defuzzify the demands, where extra costs due to opening new centers or extra transportation costs may be imposed to the system. These costs are considered as penalty in the objective function. To minimize the resulting penalties during simulation's iterations, the average of penalties is added to the objective function of the deterministic model considered as the primary objective function and variance of penalties are considered as the secondary objective function to make a robust solution. The resulted bi-objective model is solved through goal programming method to minimizing the objectives, simultaneously.  相似文献   

8.
In this paper, a dilation of the LMI characterization is presented to address constrained robust model predictive control (MPC) for a class of uncertain linear systems with structured time-varying uncertainties. The uncertainty is described in linear fractional transformation (LFT) form. By introducing slack variables and using parameter dependent Lyapunov functions, the design conservativeness is reduced compared with other existing MPC approaches. The proposed approach is applied to an industrial CSTR benchmark system to demonstrate the merits of our proposed solution.  相似文献   

9.
针对不确定性机械系统,提出了一种新的最优鲁棒控制方法.本文用模糊法去描述机械系统中的不确定性.机械系统的性能要求是确定的(保证最低要求),同时也是模糊的(成本控制里用到).所提出的控制方法是确定的,而不是基于假设的规则.经过严格的理论证明,控制系统最终可达到理想的性能指标.基于模糊信息,本文设计了一个性能指标(综合成本,包括系统的平均模糊性能和控制成本).通过最小化此性能指标,可解决控制的最优设计问题.这种最优设计方法可得到唯一的解析形式的最优解.总的来说,这种最优鲁棒控制方法较为系统,能够保证确定的系统性能得以实现,同时控制成本最小.最后,本文选了一个机械系统作为例子.  相似文献   

10.
Integrated optimum design of structures and control systems is studied by using H 2 and robust control formulations. It is derived that conventional simultaneous optimization approach by using these robust control laws can be approximated by a decoupled optimization approach in which the structures are optimized by shaping the structural singular values and then the controllers can be designed, namely, decoupled, sequential or successive design approach. It is shown that the proposed decoupled optimization approach can be used to design optimum robust structures and has certain advantages over the conventional simultaneous optimization procedures such as it avoids the drawbacks of pure robust control laws and faster, especially if the number of degrees of freedom (DOF) of the associated structure is large. The bounds for achievable robustness measures are also obtained. Following, simultaneous and decoupled optimization approaches are applied to active control of two structures. The optimization results are presented, and it is concluded that the proposed decoupled optimization approach yields the achieved global minimum much faster than the simultaneous optimization approach.  相似文献   

11.
Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks.  相似文献   

12.
A methodology for the design of two-layer hierarchical control systems is presented. The high layer corresponds to a system with slow dynamics, whose control inputs must be provided by subsystems with faster dynamics placed at the low layer. Model Predictive Control laws are synthesized for both layers and overall convergence properties are established. The use of different control configurations is also considered by allowing the switching on/off of the subsystems at the low layer. A simulation example is reported to witness the potentialities of the proposed solution.  相似文献   

13.
Identification of linear models in view of robust control design requires the identification of a control-relevant nominal model, and a quantification of model uncertainty. In this paper a procedure is presented to quantify the model uncertainty of any prespecified nominal model, from a sequence of measurement data of input and output signals from a plant. By employing a nonparametric empirical transfer function estimate (ETFE), we are able to split the model uncertainty into three parts: the inherent uncertainty in the data due to data imperfections, the unmodelled dynamics in the nominal model, and the uncertainty due to interpolation. A frequency-dependent hard error bound is constructed, and results are given for tightening the bound through appropriate input design.  相似文献   

14.
Analytical target cascading (ATC) is a generally used hierarchical method for deterministic multidisciplinary design optimization (MDO). However, uncertainty is almost inevitable in the lifecycle of a complex system. In engineering practical design, the interval information of uncertainty can be more easily obtained compared to probability information. In this paper, a maximum variation analysis based ATC (MVA-ATC) approach is developed. In this approach, all subsystems are autonomously optimized under the interval uncertainty. MVA is used to establish an outer-inner framework which is employed to find the optimal scheme of system and subsystems. All subsystems are coordinated at the system level to search the system robust optimal solution. The accuracy and validation of the presented approach are tested using a classical mathematical example, a heart dipole optimization problem, and a battery thermal management system (BTMS) design problem.  相似文献   

15.
The effectiveness of the solution method based on simulated annealing (SA) mainly depends on how to determine the SA-related parameters. A scheme as well as parameter values for defining an annealing schedule should be appropriately determined, since various schemes and their corresponding parameter values have a significant impact on the performance of SA algorithms. In this paper, based on robust design we propose a new annealing parameter design method for the mixed-model sequencing problem which is known to be NP-hard. To show the effectiveness of the proposed method, extensive computation experiments are conducted. It was found that the robust designed method outperforms the SA algorithm by McMullen and Frazier [McMullen, P.R., & Frazier, G.V. (2000). A simulated annealing approach to mixed-model sequencing with multiple objectives on a just-in-time line. IIE Transactions, 32, 679–686].  相似文献   

16.
In this paper, a methodology for the synthesis of repetitive controllers to ensure periodic reference tracking and harmonic disturbance rejection is cast in a robust control framework. Specifically, the Lyapunov–Krasovskii theory is applied to derive LMI-based conditions for designing a state feedback control law with guaranteed stability and performance properties for system parameter variations. Practical experiments in commercial uninterruptible power supplies – UPS are considered to illustrate and discuss some practical implementation aspects of the proposed method.  相似文献   

17.
In this paper, a new robust control law for controlling robot manipulators with parameter uncertainty is presented. A controller is designed based on the Lyapunov function and the control law that guarantees the system stability is derived as a result of analytical solution. Apart from previous studies, uncertainty bound and adaptation gain matrix are determined using the estimation law to control the system properly, and so this estimation law is developed as a logarithmic function depending on robot kinematics inertia parameters and tracking error. An application of the proposed control input to a two‐link robot manipulator is presented and numerical simulations are included. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A gradient-based model predictive control (MPC) strategy was recently proposed to reduce the computational burden derived from the explicit inclusion of an economic real time optimization (RTO). The main idea is to compute a suboptimal solution, which is the convex combination of a feasible solution and a solution of an approximated (linearized) problem. The main benefits of this strategy are that convergence is still guaranteed and good economic performances are obtained, according to several simulation scenarios. The formulation, however, is developed only for the nominal case, which significantly reduces its applicability. In this work, an extension of the gradient-based MPC to explicitly account for disturbances is made. The resulting robust formulation considers a nominal prediction model, but restricted constraints (in order to account for the effect of additive disturbances). The nominal economic performance is preserved and robust stability is ensured. An illustrative example shows the benefits of the proposal.  相似文献   

19.
The paper is devoted to a state filtering problem of Markov jump processes given the continuous and/or counting observations. All the transition intensity matrix, observation plan and counting intensity are parameterized by a random vector with uncertain distribution on a known support set.The estimation problem is formulated in minimax settings with a conditional optimality criterion. We reduce the initial minimax problem to a dual problem of constrained quadratic optimization. The corresponding numerical algorithm of minimax filtering is presented as well as its illustrative implementation in the monitoring of a TCP link status under uncertainty.  相似文献   

20.
Model predictive control (MPC) has become one of the most popular control techniques in the process industry mainly because of its ability to deal with multiple-input–multiple-output plants and with constraints. However, in the presence of model uncertainties and disturbances its performance can deteriorate. Therefore, the development of robust MPC techniques has been widely discussed during the last years, but they were rarely, if at all, applied in practice due to the conservativeness or the computational complexity of the approaches. In this paper, we present multi-stage NMPC as a promising robust non-conservative nonlinear model predictive control scheme. The approach is based on the representation of the evolution of the uncertainty by a scenario tree, and leads to a non-conservative robust control of the uncertain plant because the adaptation of future inputs to new information is taken into account. Simulation results show that multi-stage NMPC outperforms standard and min–max NMPC under the presence of uncertainties for a semi-batch polymerization benchmark problem. In addition, the advantages of the approach are illustrated for the case where only noisy measurements are available and the unmeasured states and the uncertainties have to be estimated using an observer. It is shown that better performance can be achieved than by estimating the unknown parameters online and adapting the plant model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号