首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过PCT设备和SEM分析方法主要分析了CeO2对LiAlH4放氢性能的影响。结果显示,掺杂CeO2明显缩短了LiAlH4的氢分解时间。在所有的试样中,掺杂2 mol%CeO2的试样开始放氢时间最早。有关放氢量的研究发现,掺杂1 mol%CeO2的试样具有最大的放氢量。并且随着掺杂量从1 mol%到5 mol%增加,试样的总放氢量表现出一个下降趋势。进一步有关微观结构的研究发现,掺杂CeO2没有引起LiAlH4微观结构的变化,所有的试样都显示出一种絮状结构。  相似文献   

2.
主要通过PCT设备研究了掺杂Y2O3的LiAlH4试样的放氢性能。结果显示,随着Y2O3掺杂量的增加,LiAlH4的放氢量增加,然而,当掺杂量达到某一值时,LiAlH4的放氢量随着掺杂量的增加而降低。和LiAlH4原样相比,掺杂Y2O3的试样初始放氢时间提前。此外,关于Y2O3对LiAlH4放氢速率影响的研究还发现,所有掺杂试样的放氢速率都比未掺杂原样的放氢速率快。并且所有掺杂试样的放氢速率的变化趋势都是相似的,即:随着时间的延长,放氢速率快速增大之后逐步降低。  相似文献   

3.
通过PCT(Pressure-Content-Temperature)设备研究了不同催化剂Ti、Ni、Fe、Ce(SO4)2 和 LaCl3对LiAlH4可逆储氢性能的影响.结果表明掺杂明显降低了试样的放氢速率,此外除了LaCl3,其他的掺杂还降低了试样的放氢温度,试样的放氢量也明显地下降了.掺杂1 mol% Ni, 1 mol% Ti, 1 mol% Ce(SO4)2 和 1 mol%LaCl3的LiAlH4可逆吸氢的研究发现,在180 ℃和 8 Mpa氢压的条件下,掺杂1 mol% Ni的试样表现出了最好的吸氢性能,其吸氢量达到了0.97%(质量分数).  相似文献   

4.
使用PCT设备分析了NaF和LiF对NaAlH4和LiAlH4放氢性能的影响。结果显示,除了掺杂0.5 mol%,4 mol%NaF的试样外,掺杂NaF明显提高了NaAlH4的放氢量。此外,掺杂NaF还增加了NaAlH4第1阶段的放氢速率。在所有的掺杂NaF的试样中,掺杂1 mol%NaF的试样的放氢量是最大的,并且放氢速率也是最快的。相比之下,掺杂LiF使得LiAlH4的放氢量明显降低了。  相似文献   

5.
使用PCT设备分析了NaF和LiF对NaAlH4和LiAlH4放氢性能的影响。结果显示,除了掺杂0.5 mol%,4 mol%NaF的试样外,掺杂NaF明显提高了NaAlH4的放氢量。此外,掺杂NaF还增加了NaAlH4第1阶段的放氢速率。在所有的掺杂NaF的试样中,掺杂1 mol%NaF的试样的放氢量是最大的,并且放氢速率也是最快的。相比之下,掺杂LiF使得LiAlH4的放氢量明显降低了。  相似文献   

6.
研究了催化物体系Co2B/稀土氧化物对NaBH4放氢性能的影响。结果显示,掺杂Co-B/CeO2和Co2B/Sm2O3明显增加了NaBH4的放氢量,在所有的掺杂试样中,掺杂Co2B:CeO2比例为1:1混合催化剂的试样具有最大放氢量274 mL。然而,掺杂混合催化剂试样放氢速率的研究显示,掺杂系统混合催化剂使得NaBH4的放氢速率明显下降。此外,掺杂试样的微观结构研究显示,与掺杂Co2B的试样相比,掺杂混合催化剂试样的微观结构更加松散。Co2B/CeO2催化剂的研究发现,多孔状的微观结构对提高NaBH4放氢量是有益的,但是,对Co2B/La2O3和Co2B/Sm2O3等催化剂的研究结果显示,微观结构中的多孔结构与NaBH4放氢量没有直接关系。  相似文献   

7.
通过PCT设备和SEM分析方法研究了Gd2O3和Nd2O3对LiAlH4放氢性能的影响。结果表明,在相同的条件下,掺杂Gd2O3和Nd2O3的LiAlH4显示了非常好的放氢性能。有关掺杂量(0.5,1,2,3,4,5,6)mol%的研究发现,Gd2O3和Nd2O3对LiAlH4放氢量的影响是非常相似的。其影响趋势为:随着掺杂量的增加,LiAlH4放氢量逐步下降,并且试样的放氢起始时间被明显地缩短了。此外,有关掺杂试样的显微组织研究表明,掺杂Gd2O3和Nd2O3对LiAlH4的显微组织的影响不明显。  相似文献   

8.
研究了催化物体系Co2B/稀土氧化物对NaBH4放氢性能的影响。结果显示,掺杂Co-B/CeO2和Co2B/Sm2O3明显增加了NaBH4的放氢量,在所有的掺杂试样中,掺杂Co2B:CeO2比例为1:1混合催化剂的试样具有最大放氢量274 mL。然而,掺杂混合催化剂试样放氢速率的研究显示,掺杂系统混合催化剂使得NaBH4的放氢速率明显下降。此外,掺杂试样的微观结构研究显示,与掺杂Co2B的试样相比,掺杂混合催化剂试样的微观结构更加松散。Co2B/CeO2催化剂的研究发现,多孔状的微观结构对提高NaBH4放氢量是有益的,但是,对Co2B/La2O3和Co2B/Sm2O3等催化剂的研究结果显示,微观结构中的多孔结构与NaBH4放氢量没有直接关系。  相似文献   

9.
通过PCT设备和SEM分析方法研究了Gd2O3和Nd2O3对LiAlH4放氢性能的影响。结果表明,在相同的条件下,掺杂Gd2O3和Nd2O3的LiAlH4显示了非常好的放氢性能。有关掺杂量(0.5,1,2,3,4,5,6)mol%的研究发现,Gd2O3和Nd2O3对LiAlH4放氢量的影响是非常相似的。其影响趋势为:随着掺杂量的增加,LiAlH4放氢量逐步下降,并且试样的放氢起始时间被明显地缩短了。此外,有关掺杂试样的显微组织研究表明,掺杂Gd2O3和Nd2O3对LiAlH4的显微组织的影响不明显。  相似文献   

10.
主要研究氩气气氛下通过机械球磨方法制备的掺杂两种稀土氧化物(由0~5mol%CeO2和 Y2O3)对NaAlH4放氢性能的影响。PCT测试结果显示,在相同的条件下,两种稀土氧化物引起 NaAlH4的最大放氢量和平均放氢速率的规律相似,都随着掺量的增加先增大至某一值后又开始减小。相对于 Y2O3,CeO2对NaAlH4的催化效果影响更为突出,达到相同的放氢量 4.8wt%时,1mol%CeO2-NaAlH4的放氢速率明显比1mol% Y2O3-NaAlH4要高。SEM分析结果显示,随着催化剂含量的增加,粉体颗粒更加均匀,继而团聚成絮状。同时研究发现,球磨后呈分散结构的颗粒可能比絮状结构颗粒反应接触面积大,且经过加热放氢后的试样有很多类似于蜂窝状的气孔存在。  相似文献   

11.
实验分析了LaCl3和La2O3对LiAlH4-NH4Cl体系放氢性能的影响。结果显示,掺杂La2O3缩短了试样的放氢起始时间,并且提高了试样的放氢速率。然而,掺杂LaCl3明显降低了试样的放氢速率。进一步的研究显示,随着LaCl3和La2O3加入量的增加,除了掺杂3 mol%LaCl3的试样,其它的试样在180 min内的放氢量显示出了一个逐步降低的趋势。此外,掺杂La2O3试样的最大放氢量明显高于掺杂LaCl3试样。除此以外,SEM分析结果显示,掺杂试样与未掺杂试样的微观结构都是相似的,没有显示出明显的不同。  相似文献   

12.
通过PCT设备和XRD对掺杂Ti和Fe的LiAlH4试样进行了研究.结果表明:掺杂Ti和Fe都明显地降低了LiAlH4的放氢温度、放氢量和放氢速率,其中掺杂5mol?试样的放氢温度降低最低,并且放氢量明显地高于掺杂Ti试样的放氢量;和掺杂5 mol% Ti的试样相比,掺杂5 mol?的试样在第一分解阶段的分解速率明显低于前者;对于经过250 ℃热分解后的掺杂5 mol% Fe和1、3、5 mol%Ti的试样的XRD分析结果显示,掺杂催化剂并没有引起晶体结构的变化,也没有发现Ti和Fe相或含Ti和Fe的第二相的存在  相似文献   

13.
采用PCT(Pressure-Conten-Temperature)、XRD和SEM等测试方法,对经过不同时间球磨的LiAlH4 及其掺杂3 mol LaCl3试样的放氢性能进行了研究.结果发现,球磨工艺在明显降低LiAlH4放氢温度的同时也明显降低了其放氢量.此外,XRD结果发现,球磨试样的衍射峰发生了小幅度的宽化,部分衍射峰的强度有所降低,然而晶体结构没有发生明显变化,这说明LiAlH4具有很好的稳定性.  相似文献   

14.
实验通过排水法研究了混合催化CoB/La_2O_3对NaBH4水解放氢性能的影响。结果显示,混合催化剂的加入量在1%~4%的变化区间时,掺杂混合催化剂的试样的放氢速率随着掺杂量的增加都呈现出了一个明显的增加趋势,并且掺杂4%(70%CoB/30%La_2O_3)的试样的放氢速率最大为260mL/min;然而对于放氢量的研究发现混合催化剂CoB/La_2O_3加入量以及配比影响NaBH4的放氢量,在所有试样中,当掺杂量为4%的掺杂80%CoB和20%La_2O_3的试样放氢量最大为575mL,但此时试样放氢速率有所降低。  相似文献   

15.
采用PCT(pressure-conten-temperature)、XRD等测试方法对掺杂Ag2SO4、SrCO3、TiO2和ZnO的NaAlH4放氢性能进行研究。结果显示,掺杂TiO2的NaAlH4试样具有最大的放氢量,而掺杂SrCO3的试样放氢量最小,并且对比所有掺杂试样在第1阶段的放氢速率发现,掺杂TiO2的NaAlH4试样具有最大的放氢速率,在整个放氢性能的测试过程中,试样表现出了明显的2个分解阶段,并且在第1阶段的分解速率明显大于第2阶段。此外,掺杂TiO2和ZnO试样的XRD结果表明,掺杂试样经过30min的球磨之后,试样的晶体结构没有发生明显变化,并且没有新的物相生成,这说明NaAlH4具有很好的稳定性。  相似文献   

16.
通过PCT(pressure-content-temperature)设备研究催化剂Ti和 LaCl3对NaAlH4和LiAlH4储氢性能的影响.NaAlH4和LiAlH4掺杂LaCl3比掺杂Ti的放氢性能有明显提高.在吸氢性能的研究中发现,在第1个吸氢循环中,掺杂3 mol% LaCl3的NaAlH4试样的放氢温度明显降低.此外,LaCl3的摩尔含量对NaAlH4的放氢性能的影响是非常明显的.研究结果显示,随着LaCl3含量的增加,NaAlH4的放氢量和放氢速率显示出相同的变化趋势,即先增加后减少.其中掺杂3 mol% LaCl3的NaAlH4试样的放氢量最大并且放氢动力学性能最好,其激活能为41.6 kJ/mol,这个值低于所报道的掺杂Ti的NaAlH4的激活能.  相似文献   

17.
主要研究氩气气氛下通过机械球磨方法制备的掺杂两种稀土氧化物(由0~5mol%CeO2和 Y2O3)对NaAlH4放氢性能的影响。PCT测试结果显示,在相同的条件下,两种稀土氧化物引起 NaAlH4的最大放氢量和平均放氢速率的规律相似,都随着掺量的增加先增大至某一值后又开始减小。相对于 Y2O3,CeO2对NaAlH4的催化效果影响更为突出,达到相同的放氢量 4.8wt%时,1mol%CeO2-NaAlH4的放氢速率明显比1mol% Y2O3-NaAlH4要高。SEM分析结果显示,随着催化剂含量的增加,粉体颗粒更加均匀,继而团聚成絮状。同时研究发现,球磨后呈分散结构的颗粒可能比絮状结构颗粒反应接触面积大,且经过加热放氢后的试样有很多类似于蜂窝状的气孔存在。  相似文献   

18.
采用球磨的方式在LiAlH4中分别掺入3种稀土催化剂LaCl3、CeCl3和Ce(SO4)2,研究了稀土催化剂对LiAlH4的相结构和放氢性能的影响。结果表明,在球磨过程中,掺杂Ce(SO4)2对LiAlH4的分解基本没有影响,而掺杂LaCl3和CeCl3则造成LiAlH4部分分解,产生了LiCl和Al3RE(RE=La,Ce)相。在LiAlH4放氢反应中,稀土催化剂的加入均使LiAlH4初始放氢温度降低,特别是Ce(SO4)2使第1步的放氢温度降低了约25 ℃。稀土催化剂有助于加快LiAlH4分解反应速率,提高LiAlH4的放氢性能。  相似文献   

19.
研究了催化剂Co2B/Nd2O3对NaBH4水解放氢性能的影响。结果显示,随着Co2B/Nd2O3加入量的增加,掺杂NaBH4试样的放氢速率明显加快。当Co2B/Nd2O3的加入量相同时,随着催化剂Co2B/Nd2O3中Nd2O3含量的增加,掺杂试样的放氢速率明显降低。对于放氢量的研究发现,当Co2B/Nd2O3加入量增加时,试样的放氢量有所增加,但是增加幅度不大,在所有的掺杂试样中,掺杂量为4%的掺杂80%Co2B+20%Nd2O3的试样的放氢量最大为520 mL/g。SEM的分析发现,随着NaBH4中掺杂量的增加,试样的放氢速率变化明显,然而试样的放氢量却没有明显变化。  相似文献   

20.
分析了制备工艺过程、球磨设备、试样放置时间以及球磨时间对NaAlH4放氢性能的影响。其中除了试样3是采用高能球磨机外,其它所有试样均采用行星式球磨机。结果表明,这些因素对NaAlH4放氢性能的影响非常明显。试样在球磨过程中经过上下翻转后,其放氢量明显比不翻转高出了50%(质量分数)。不同球磨设备研究结果显示,试样3经过高能振动球磨机球磨后,其放氢量比行星式球磨机制备的试样的放氢量明显提高了。试样放置时间与试样球磨时间的研究结果显示,制备好的球磨试样经过24 h放置后,其放氢量明显提高。此外,试样经过不同时间球磨后,其放氢量也有明显的不同。经研究发现,球磨80 min试样的放氢量比球磨100 min和球磨40和60 min试样的放氢量要高,但和其它的影响因素相比,球磨时间对NaAlH4放氢性能的影响相对较小  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号