首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
表面机械研磨处理可以使工业纯钛形成纳米表面层, 通过扫描电镜、透射电镜和高分辨电镜观察SMAT处理后的工业纯钛表层组织, 并研究了工业纯钛表面纳米化机制. 工业纯钛表面纳米化机制为: 孪晶的形成和孪晶的交割使得原始晶粒尺寸减小, 同时使晶格取向发生改变, 有利于位错滑移; 孪晶通过自身交割, 以及位错密度增加及其相互作用, 形成了细小的孪晶与胞状组织; 胞状组织转变为多边形亚晶; 亚晶不断吸收位错形成大角度晶界, 亚晶以及取向不同的细小孪晶逐渐转变为随机取向的纳米晶.  相似文献   

2.
采用冷加工方法制备了R60702工业纯锆管材,研究了冷加工变形率分别为20%,30%,40%,50%,60%的冷加工及700℃×1 h真空再结晶退火对材料组织和力学性能的影响。结果表明:工业纯锆管材冷加工变形程度在20%时加工硬化明显,随着变形程度的继续增大,硬化程度趋于稳定;700℃×1 h退火后,不同冷加工变形率的管材组织均为再结晶组织,晶粒细化程度随变形率的增加逐渐加大,20%变形率在工业纯锆的临界变形区,晶粒粗大且不均匀;随着变形率的增大材料的强度变化不大,塑性有增加的趋势,20%冷加工变形率时的强度和塑性值均为最低。  相似文献   

3.
研究了不同热处理制度对R60702工业纯锆管材力学性能和显微组织的影响。结果表明:工业纯锆管材热处理制度为600℃×60 min时能够得到优异的力学性能,抗拉强度为492.5 MPa,屈服强度为330 MPa,延伸率为35%;经两辊、三辊冷轧加工的19.05 mm×1.65 mm工业纯锆管材,当热处理温度低于550℃时,组织未发生完全再结晶,温度为580℃时,组织为细小的再结晶组织,温度为600、630℃时,仍为细小等轴晶;热处理时间对显微组织的影响不明显,随着热处理时间延长,晶粒无明显长大,粒径约为10μm;通过成分及加工工艺优化可进一步提高工业纯锆管材各项性能。  相似文献   

4.
<正>喷丸、喷砂、机械研磨、超声纳米表面改性、旋转超声喷丸及其他表面纳米化处理技术是近年来研究的热点。M.Wen等研究了利用机械研磨技术获得纯钛细晶的方法,S.Dai等通过高能喷丸将纯钛的屈服强度提高了150 MPa。但对于细晶化表面处理后纯钛在加载时变形机理的研究却很少见到报道。为了研究细晶纯钛单轴拉伸变形机理,俄罗斯国立托木斯克理工大学A.V.Panin等采用超声波冲击的方法制备细晶纯钛样品,并进行拉伸试验,借助于透射  相似文献   

5.
采用表面机械研磨工艺对工业纯锆进行处理,利用四点弯曲疲劳试验对试样的疲劳性能进行研究,并利用透射电子显微镜(TEM)和光学显微镜(OM)对试样的微观组织进行观察,利用纳米压痕仪测试处理试样从表层到基体的硬度分布,采用X射线衍射(XRD)方法分析表层晶粒尺寸、微观畸变以及残余应力分布特征。结果表明:经表面机械研磨处理工业纯锆的疲劳极限为195 MPa,而原始试样的疲劳极限为159MPa,表面机械研磨处理使工业纯锆的疲劳极限提高了23%,疲劳性能的改善可归因于表面机械研磨引入的纳米化表层、加工硬化以及残余压应力。本文进一步研究发现,应力幅大于270 MPa,表面机械研磨处理试样的疲劳寿命低于原始试样;应力幅低于270 MPa,表面机械研磨处理试样的疲劳性能比原始试样优异。  相似文献   

6.
为系统研究工业纯钛TA2拉伸性能及低周疲劳性能的各向异性,沿轧制方向(RD)、与RD呈30°方向(RD-30°)、与RD呈60°方向(RD-60°)及垂直轧制方向(TD)开展了室温拉伸及低周疲劳试验。结果表明:随着取样角度增加,屈服强度增加,屈强比上升,材料的塑性下降。基于Hollomon模型及Johnson-Cook模型对工业纯钛真实应力应变曲线进行预测,发现Hollomon模型预测精度更高。低周疲劳试验结果表明:不同取样方向的试样均呈现循环软化特征,随着取样角度增加,恒定应变幅下循环应力幅值增加,总的应变能密度增加,导致疲劳寿命呈下降趋势。不同取向试样的低周疲劳寿命满足Manson-coffin经验关系式。  相似文献   

7.
利用表面机械研磨处理(SMAT)技术对GCr15钢制备了纳米结构表层。通过X射线衍射及透射电镜分析了其组织结构,利用UMT—2M型摩擦磨损试验机测试了GCr15钢处理前后的摩擦磨损性能。分析结果表明,试验中处理时间为15 min是提高其摩擦磨损性能的最佳工艺条件。磨痕形貌的扫描电镜观察表明,随着磨损深度的增加,主导磨损机制由黏着磨损转变为磨粒磨损。  相似文献   

8.
采用表面机械研磨法使Cu-4.5Ti合金表面形成纳米晶,利用X射线衍射分析,透射电子显微镜观察和显微硬度测量等手段研究时效时间对表面机械研磨处理Cu-4.5Ti合金组织和硬度的影响。结果表明:经过表面机械研磨处理后的Cu-4.5Ti合金发生了塑性变形,表层塑性变形明显,试样中出现了纳米晶结构,形成大量交割状态的机械孪晶;经过8 h时效处理后,试样中形成了更加致密的孪晶组织,并产生了更多孪晶区域。经表面机械研磨处理合金试样的显微硬度由表层向基体内部表现为先增大后减小的趋势,并最终达到稳定状态;经过8 h时效处理后试样到达峰值硬度,此时合金表层硬度增大至HV 213,并在离表层深度约50μm处获得HV 278的峰值硬度。  相似文献   

9.
王桂生 《稀有金属》1990,14(6):458-460
(一)实验 1.材料 工业纯钛板材、棒材、管材的品种规格见表1。  相似文献   

10.
陈溪强 《钢铁钒钛》2009,30(4):16-20
利用现有轧钢设备轧制纯钛板坯,借助光学显微镜研究轧坯的组织形貌,发现轧制钛坯材料的头部与尾部微观组织形貌变化情况相同,即心部组织为锯齿状α片群,α片间还保留少量β相,角部微观组织基本是等轴晶粒,侧边中间位置均为变形α晶粒,且晶粒大于角部、小于心部。透射电镜分析发现轧制钛坯微观组织中出现大量位错,α晶粒内有较多的析出相和孪晶组织,但未见板条状结构。X射线衍射分析表明轧制变形过程中出现了较强的变形织构。沿平行和垂直于轧制方向的取样拉伸,结果发现纯钛坯横向平均屈服强度和抗拉强度高于纵向。  相似文献   

11.
采用异步轧制方式在室温下轧制TA1工业纯钛,获得平均晶粒尺寸小于300nm的超细晶组织,显著提升了材料的强度,并探讨了超细晶的形成和强化机制。经轧下量为87%的异步轧制后,材料内部形成均匀分布的狭长剪切带,组织中主要为等轴超细晶,亦存在少量拉长晶粒和小角度晶界;材料的显微硬度比原始热轧态提高了60%,抗拉强度提高至740MPa以上。  相似文献   

12.
Equal-channel angular pressing (ECAP) of interstitial-free (IF) steel at equivalent strain, εvm = 12 has been employed to develop ultrafine-grained (UFG) microstructure with high fraction of low angle grain boundaries, that enhances strength significantly with reduced tensile ductility. ECAPed IF steel has been deformed further by cold rolling/cryorolling at ?50 °C to >90 % reduction in area. It is observed that the UFG structure gets refined with an improvement in high angle grain boundary fraction and heavily stressed non-equilibrium grain boundaries in cryorolled state resulting in significant strengthening. However, the decrease in grain size to an ultrafine level with the increased lattice strain lowers the work hardening ability of the material that limits its ductility. Hence, the rolled samples are flash annealed at 675 °C in order to recover the ductility of the material by achieving partially recrystallized structures. Consequently, the increased subgrain size as well as the grain size, the reduced residual lattice strain, lower hardness and strength with marginal recovery of ductility is maintained in order to attain the yield strength 2–3 times compared to that of as-received coarse-grained IF steel.  相似文献   

13.
In this study, microstructural evolution and mechanical properties of commercial purity titanium after a combined equal channel angular pressing (ECAP) and warm caliber rolling (WCR) was investigated. The ECAP process was applied to enhance the hardness and strength of the specimen by decreasing the grain size and producing UFG microstructure. WCR was applied to reduce cross-section and increase the ductility of the ECAPed specimens. Results show that WCR reduces the work-hardening rate by increasing grain size and also increases elongation and workability while it reduces the yield and ultimate tensile strength. It has been shown that the strength ratio (\({{\sigma_{UTS} } \mathord{\left/ {\vphantom {{\sigma_{UTS} } {\sigma_{y} }}} \right. \kern-0pt} {\sigma_{y} }}\)) and strain ratio (\({{\varepsilon_{UTS} } \mathord{\left/ {\vphantom {{\varepsilon_{UTS} } {\varepsilon_{t} }}} \right. \kern-0pt} {\varepsilon_{t} }}\)) of the processed samples are comparatively larger than all previously post processed ECAPed materials at lower temperatures.  相似文献   

14.
Incremental equal channel angular pressing (I-ECAP) is a severe plastic deformation process used to refine grain size of metals, which allows processing very long billets. As described in the current article, an AZ31B magnesium alloy was processed for the first time by three different routes of I-ECAP, namely, A, BC, and C, at 523 K (250 °C). The structure of the material was homogenized and refined to ~5 microns of the average grain size, irrespective of the route used. Mechanical properties of the I-ECAPed samples in tension and compression were investigated. Strong influence of the processing route on yield and fracture behavior of the material was established. It was found that texture controls the mechanical properties of AZ31B magnesium alloy subjected to I-ECAP. SEM and OM techniques were used to obtain microstructural images of the I-ECAPed samples subjected to tension and compression. Increased ductility after I-ECAP was attributed to twinning suppression and facilitation of slip on basal plane. Shear bands were revealed in the samples processed by I-ECAP and subjected to tension. Tension–compression yield stress asymmetry in the samples tested along extrusion direction was suppressed in the material processed by routes BC and C. This effect was attributed to textural development and microstructural homogenization. Twinning activities in fine- and coarse-grained samples have also been studied.  相似文献   

15.
In the present study, low carbon microalloyed ultrahigh-strength steel was manufactured on a pilot scale. Transformation of the aforesaid steel during continuous cooling was assessed. The steel sample was thermomechanically processed followed by air cooling and water quenching. Variation in microstructure and mechanical properties at different finish rolling temperatures (FRTs) was studied. A mixture of granular bainite and bainitic ferrite along with interlath and intralath precipitation of (Ti, Nb)CN particles is the characteristic microstructural feature of air-cooled steel. On the other hand, lath martensitic structure along with a similar type of microalloying precipitates of air-cooled steels is obtained in the case of water-quenched steel also. The best combination of strength (1440 to 1538 MPa) and ductility (11 to 16 pct) was achieved for the selected range of FRTs of water-quenched steel.  相似文献   

16.
 A nanocrystalline layer was synthesized on the surface of TWIP steel samples by surface mechanical attrition treatment (SMAT) under varying durations. Microhardness variation was examined along the depth of the deformation layer. Microstructural characteristics of the surface at the TWIP steel SMATed for 90 min were observed and analyzed by optical microscope, X-ray diffraction, transmission and high-resolution electron microscope. The results show that the orientation of austenite grains weakens, and α-martensite transformation occurs during SMAT. During the process of SMAT, the deformation twins generate and divide the austenite grains firstly; then α-martensite transformation occurs beside and between the twin bundles; after that the martensite and austenite grains rotate to accommodate deformation, and the orientations of martensite and between martensite and residual austenite increase; lastly the randomly oriented and uniform-sized nanocrystalline layers are formed under continuous deformation.  相似文献   

17.
After surface nanocrystallization of pure Al and a cast Al-Si alloy through surface mechanical attrition treatment (SMAT), 200- to 300-??m-thick Zn coatings were deposited on the nanostructured surface using the clod spray technique. Subsequently, diffusion of Zn into the Al substrate was induced by postspray annealing treatment at various temperatures for different times. The diffusion kinetics of Zn in the nanostructured surface layers was studied in terms of the Zn concentration profile in the substrate by using scanning electron microscopy (SEM) and electron probe microscopy analysis (EPMA). Experimental results show that not only the diffusivity of Zn in the nanocrystalline grains is significantly increased compared with the diffusion in the coarse grained counterpart, but the temperature at which noticeable Zn diffusion in Al alloys occurs is also reduced from 573?K (300?°C) in coarse-grained Al alloys to 523?K (250?°C) in nanostructured alloys. In addition, because the nanocrystalline grains produced by SMAT in Al-Si alloys are much smaller than those in pure Al due to the effect of eutectic Si, the diffusion of Zn in the SMATed Al-Si alloy is much faster than that in the SMATed pure Al. It is believed that the high diffusivity of Zn in the nanocrystalline Al grains is attributed to the large fraction of grain boundaries that act as fast diffusion channel. The effect of thermal stability of the nanocrystalline grains on Zn diffusion in the SMATed Al alloys is also discussed.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号