首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
低速、重载、粗糙面接触条件下工作的机械零部件,绝大多数在混合润滑状态下工作。但是,同时处理接触与流体动力润滑技术上比较困难,前人的研究主要针对于全膜润滑或者光滑表面的工况条件,混合润滑长期以来一直是界面研究中的薄弱环节和瓶颈。论文使用统一数学模型, 研究准系统数值解法求解热弹性流体动力润滑完全数值解,分析粗糙面接触下混合润滑的状态下油膜润滑和接触同时存在情况的热解。结果显示该模型可得到良好的收敛解,能有效的模拟润滑状态渐变过程,对工程应用具有较强的实际意义。  相似文献   

2.
由于载荷、接触几何、粗糙表面、热效应等因素的影响,分析不同工作条件下滤波减速器转臂轴承工作界面润滑状态较为困难,为了研究转臂轴承润滑性能,本文建立了转臂轴承的热弹流混合润滑模型。以静力学和运动学建立滤波减速器转臂轴承(球滚动体-滚动轴承)力学模型,结合点接触热弹流混合润滑理论建立轴承热弹流润滑模型,使用离散卷积快速傅里叶变换方法求解弹性变形和表面温升,使用有限差分法求解雷诺方程和能量方程,分析轴承接触副物理尺寸、载荷、卷吸速度和接触副粗糙表面等外部工况对轴承润滑特性以及表面下应力的影响。从数值模拟结果中可以看出:较大滚动体半径有益于轴承润滑油膜形成,提高轴承的承载能力;不同的机械加工表面下接触副平均膜厚和温度随转速和滑滚比变化趋势相同;轴承接触副润滑状态从混合润滑进入全膜润滑状态,油膜内最大温升先减小后增大;提高机械加工表面光洁度有利于提高转臂轴承润滑状态,减小最大表面下应力,提高表面接触强度。本文建立的转臂轴承热弹流混合润滑模型可以模拟接触和流体动压润滑同时存在的混合润滑状态,可以反映转臂轴承在各种工作条件下润滑性能,可以进一步判断其工作效率和使用寿命。  相似文献   

3.
将渐开线斜齿轮啮合过程中的轮齿接触等效为一个三维无限长线接触问题,建立了用于求解斜齿轮三维瞬态弹流混合润滑计算的数学模型。考虑斜齿轮啮合实际工况,分析啮合过程中齿面时变半径,时变表面切向速度的变化等,引入真实的三维机械加工粗糙表面, 联合统一的Reynolds方程方法分析了单个轮齿在整个啮合过程中三维瞬态弹流润滑完全数值解,讨论了光滑表面和真实机械加工粗糙表面对轮齿啮合过程的膜厚和压力分布的影响,揭示了2种机械加工表面的微观弹流润滑特性。结果表明:粗糙表面对齿轮润滑状况影响显著,尤其在轮齿啮出过程中,严重的降低了齿轮间的润滑油膜厚度,使轮齿润滑状况变得恶劣;粗糙表面加工精度高(粗糙度低),其接触表面的膜厚比高,接触区域和接触负载小,故而润滑状况好。  相似文献   

4.
湿式离合器接合过程中的热弹性稳定性   总被引:1,自引:0,他引:1  
针对湿式离合器接合过程中的局部高温区及影响因素,利用热弹性不稳定性理论(TEI)进行了理论建模与分析。模型中考虑了材料表面粗糙度和混合润滑对摩擦副温度和压力的影响,分析了混合润滑状态下润滑区域与接触区域的比例以及油膜剪切热量与摩擦热量的比例。为了准确测量材料表面粗糙度,设计台架试验,利用表面形貌仪测试了对偶片表面形貌,分析了粗糙度在离合器不同使用阶段的变化规律。结果表明,当离合器接合转速超过临界值时,温度场分布出现明显的波动,高、低温区间隔分布。同时,指出了离合器摩擦材料参数(导热性、弹性)与结构参数(对偶片厚度)对稳定性的影响。  相似文献   

5.
建立了考虑轴向往复运动以及轴颈偏斜的人字槽滑动轴承混合润滑(Mixed-EHL)数值模型。通过瞬态平均雷诺方程求解了考虑表面粗糙度效应的油膜压力,通过影响系数法求得轴瓦内表面弹性变形,而界面接触压力则由Lee-Ren粗糙峰接触模型求得。通过数值模拟得到了承载力、接触载荷比、摩擦因数等参数随时间的变化规律,并研究了往复运动间距及偏斜角对混合润滑性能的影响。研究表明:油膜力与轴向速度呈同相变化,接触载荷与轴向速度呈反相变化;随运动间距的增大,滑动轴承在反向运动历程中的承载能力和润滑性能显著降低;偏斜角增大会降低轴承的混合润滑性能以及承载能力。  相似文献   

6.
为探究弹性流体动压润滑(弹流润滑)状态下RV减速器主轴承接触表面之间的润滑特性,基于润滑脂的非牛顿特性以及粗糙表面分形理论,提出一种主轴承的点接触弹流脂润滑数值模型。首先,对该模型进行数值求解,得到脂膜压力、脂膜厚度的分布规律;然后,将其分别与其他点接触弹流润滑模型的数值结果和实验结果进行对比,验证了所建模型的正确性;最后,分析了主轴承表面光滑和粗糙状态下流变指数、分形维数、卷吸速度、载荷和润滑脂黏度对润滑性能的影响。结果表明:润滑脂的非牛顿性越明显,脂膜厚度越小且颈缩现象愈加不明显,接触区附近脂膜压力越符合赫兹压力分布,二次压力峰逐渐消失;考虑主轴承分形粗糙表面的弹流润滑特征更切合实际,增大分形维数,接触区真实接触面积增大,有利于降低脂膜压力,增加脂膜厚度;卷吸速度、载荷和润滑脂黏度对脂膜厚度分布的影响显著,对脂膜压力分布的影响较小;脂膜厚度以及最小膜厚越大,主轴承接触区脂膜不易破坏且越容易形成动压润滑。  相似文献   

7.
应用数值分析方法求解了表面波度对线接触往复运动工况下的热弹性流体动力润滑的影响.分析中假设所研究的润滑油服从Ree-Eyring流变模型,使用3种冲程长度,并使这3种冲程下冲程中心的卷吸速度值完全相等.表面波度扰乱了压力、膜厚和油膜中层温升的分布.由于表面波度的影响,一个周期的两个冲程内的油膜的变化不再一致.同光滑表面接触相比,表面波度在一个周期内提升了油膜中的最大压力和最大温升.降低了最小膜厚和摩擦因数.表面波度对油膜中最大压力的变化影响最大.  相似文献   

8.
线接触部分弹性流体动力润滑的研究   总被引:1,自引:1,他引:1  
本文获得了中轻载及重载工况下粗糙表面间的等温部分弹流线接触问题的完全数值解,求得了在有表面粗糙影响的条件下,线接触润滑的流体动压力和粗糙度接触压力、油膜厚度以及接触载荷,并且研究了粗糙度及其纹理方向对线接触弹流润滑中的接触载荷、中心膜厚、最小膜厚以及二次压力峰的大小和位置的影响,同时也研究了部分弹流润滑条件下,各种工况参数变化对润滑性态的影响。  相似文献   

9.
线接触流变弹流润滑的Reynolds方程及应用   总被引:1,自引:0,他引:1  
将描述弹流接触区润滑油流变特性的流变模型归结为三类 导出了适用于第一、二类流变模型的线接触流变弹流润滑Reynolds方程 该方程可用于求解线接触流变热弹流润滑问题的油膜厚度、压力分布、牵曳系数等 以Bair Winer模型为例 ,应用多重网格方法 ,得到了线接触流变热弹流润滑问题的完全数值解  相似文献   

10.
为研究混合润滑状态下齿轮的接触刚度,提出了一种计算齿轮接触刚度的方法。首先计算出齿轮啮合过程中运动参数和受力情况,然后采用混合弹流润滑方法求解得到不同时刻粗糙齿面啮合处的膜厚与压力分布,将结果代入接触刚度计算式,得到不同时刻齿轮啮合的接触刚度。讨论了不同工况对齿轮啮合接触刚度的影响,并将光滑表面接触刚度与粗糙表面接触刚度进行了对比。结果表明:转速和载荷对接触刚度影响很大,速度越快,接触刚度越小;载荷越大,接触刚度越大。  相似文献   

11.
滤波减速器转臂轴承混合润滑性能分析   总被引:1,自引:1,他引:0  
综合考虑滤波减速器转臂轴承的载荷、接触几何、真实表面粗糙度等因素的影响,建立了转臂轴承的混合润滑数值分析模型,分析了额定工况和不同转速、温度下轴承接触区的油膜比厚、接触载荷比和下表面应力等参数,并在此基础上探讨了沟曲率半径和表面粗糙度对转臂轴承混合润滑特性的影响。结果表明:提高转速可使接触区由边界润滑进入全膜润滑,润滑性能改善;环境温度升高将导致润滑剂粘度下降,致使润滑状态恶化,下表面应力增大;内沟曲率半径增加导致内滚道接触区下表面应力增大,油膜比厚先减后增再单调递减;外沟曲率半径增加导致外滚道接触区下表面应力持续增大,油膜比厚先略有上升后一直减小;减小表面粗糙度改善界面润滑状态,但过小时并不能减少干接触,反而还会增加下表面应力和提高加工成本。  相似文献   

12.
将描述弹流接触区润滑油流变特性的流变模型归结为三类,导出了适用于第一,二类流变模型的线接触流变弹流润滑Reynolds方程。该方程可用于求解线接触流变热弹流润滑问题的油膜厚度,压力分布,牵曳系数等,以Bair-Winer模型为例,应用多重网格方法,得到了线接触流变热弹流润滑问题的完全数值解。  相似文献   

13.
根据润滑理论,考虑弹性变形,推导了轴承微极流体弹流润滑三维问题的Reynolds方程.结合约束条件,利用编程软件分别模拟出了点接触和线接触微极流体弹流润滑条件下的三维数值解,数值结果更加直观形象地呈现了空间三维油膜压力和膜厚的数值分布情况.  相似文献   

14.
为更加准确地预测船用柴油机主轴承的润滑特性,运用CMS模态综合法缩减整个机体和曲轴,运用基于质量守恒边界条件的广义Reynolds方程和Greenwood/Tripp接触理论,计入温度影响,建立了基于整个柔性机体下的主轴承热弹性流体动力TEHD混合润滑模型。与单轴承座下的TEHD混合润滑对比,单轴承座计算结果偏于保守,而整机体下参数变化平缓,更接近实际。与整机体模型下的弹性流体动力EHD润滑对比,不计入温度的影响,其计算结果将无法准确反映轴承的整体润滑形貌。相较于另2种模型,基于柔性整机体下的热弹性流体动力混合润滑TEHD模型计算时间增加可以接受。显然,该润滑模型的建模方法具有较高的应用价值。  相似文献   

15.
针对滚珠丝杠副在低转速状态存在混合润滑导致丝杠滚道加速磨损的问题,基于等温弹流润滑理论建立了滚珠丝杠副弹流润滑接触模型研究滚珠与滚道间的摩擦机理和磨损形式.首先基于Frenet-Serret坐标转换方法建立丝杠与螺母的滚道曲面几何模型.其次基于Reynolds方程建立了滚珠丝杠副弹流润滑接触模型,求解了润滑油膜接触压力分布、油膜厚度分布和微凸体接触压力分布.最后从微观角度阐明了滚珠丝杠副的摩擦机理,其摩擦因数由微凸体接触摩擦因数和油膜润滑摩擦因数组成.实验结果表明:在低转速阶段丝杠滚道的磨损方式为黏着磨损和磨粒磨损,且模拟的摩擦因数曲线趋势和经典的Stribeck摩擦曲线趋势吻合较好,根据实测摩擦力矩准确识别了不同转速下滚珠丝杠副的摩擦因数和润滑状态.  相似文献   

16.
滤波减速器轮齿表面瞬态微观弹流润滑模型   总被引:2,自引:0,他引:2  
针对滤波减速器接触齿对多、齿间润滑状况复杂这一问题,建立了滤波减速器轮齿弹流润滑模型.该模型综合考虑了啮合齿对载荷分配、齿面几何间隙以及齿面加工粗糙度等因素,并采用牛顿(有限元)法实现了该润滑模型的完全数值解,得到了齿间油膜厚度、油膜压力沿啮合线的分布规律以及粗糙度对轮齿润滑特性的影响.结果表明:齿间油膜厚度和压力沿着啮合线变化,且存在着振荡和突变现象;加工粗糙度会导致齿面油膜厚度减小,润滑情况变差;正弦波状粗糙度表面的压力、膜厚值接近于真实粗糙度表面,一定程度上可以采用正弦波状粗糙度模拟齿面真实加工粗糙度.  相似文献   

17.
谐波齿轮传动齿面的润滑状态,考虑到表面粗糙度影响后,用基于平均流动模型的平均雷诺方程进 一步研究,推导薄膜润滑条件下齿面压力和油膜厚度的计算关系,计算剪切膜和挤压膜的数值解,给出齿面最小油 膜厚度曲线。结果表明,齿面表面粗糙度增大,由它所引起的动压效应增强,齿面上的润滑油易存留,能够建立起足 够的油膜厚度。  相似文献   

18.
润滑状态按运动付接触表面是否产生弹性变形以及表面间的润滑剂其粘度是否随压力而变化,而分为四种:刚性表面等粘度润滑,刚性表面变粘度润滑,弹性表面等粘度润滑和弹性表面变粘度润滑。其出现的可能性和计算方法大致如表1所归纳。  相似文献   

19.
为了解决具有旋转和轴向2个方向速度的胶印机窜墨辊渐开线圆柱直齿轮的润滑问题,构建了一种基于有限长线接触的混合弹性流体动压润滑模型,对不同粗糙面类型的齿轮润滑进行数值模拟。在几何分析基础上,根据混合弹流理论建立了齿轮系统的控制方程。对控制方程进行无量纲化和离散化后,采用高效的多重网格算法进行数值求解,获得了不同速度比、粗糙面类型的油膜压力分布、膜厚分布、综合摩擦因数和粗糙面承载率。研究结果表明:直齿轮的轴向速度加剧了齿端的应力集中;粗糙面类型对齿轮润滑有重要影响;没有轴向速度时,纵向粗糙面的齿端压力最大,达到593.1MPa,有轴向速度时,纵向粗糙面的压力升高值最小,只有188.7MPa;同时发现,轴向速度和粗糙面类型都对摩擦因数有影响。  相似文献   

20.
本文提出一个线接触等温弹流的完全数值解。作者对Hooke润滑状态图的划分及其膜厚计算公式提出了新的见解:划出一个新的润滑状态区——弹性亚变粘度区并给出相应的油膜厚度计算公式,从而使润滑状态图上各膜厚公式的最大误差由原来的近40%降到6.5%以下,其计算程序有运算速度快,精度高,占内存少,适应范围广的特点。计算中最大Herty压力达2.05 GPa  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号