共查询到20条相似文献,搜索用时 10 毫秒
1.
在5个SBR反应器中,通过对好氧颗粒污泥污染物去除功效、颗粒形态结构与粒径以及胞外聚合物组成的跟踪分析,研究Cr(VI)质量浓度0、1、3、5和10mg/L长期作用(历时65 d)对好氧颗粒污泥稳定性的影响。结果表明,好氧颗粒污泥对质量浓度3mg/L以下的Cr(VI)长期作用具有良好的抵御机制,而质量浓度5mg/L以上Cr(VI)则严重威胁好氧颗粒污泥的稳定性,使其结构趋于扁平化并逐渐解体。虽然Cr(VI)质量浓度越高各反应器的COD和TN去除率下降趋势愈明显,但在实验末期,各反应器对COD和TN仍保持着较高去除率,分别为97.43%、96.89%、95.43%、93.69%、90.46%和95.11%、94.31%、91.97%、87.68%、82.59%。EPS中胞外多糖在保护微生物、抵抗Cr(VI)毒害方面起主要作用,面临Cr(VI)胁迫,胞外多糖的含量明显增加,而胞外蛋白含量基本不变。胞外多糖与胞外蛋白比值的增加以及结构性多糖的消耗是降低好氧颗粒污泥结构稳定性的重要因素。 相似文献
2.
为了探究在低强度进水条件下有机负荷波动频次对好氧颗粒污泥(aerobic granular sludge,AGS)的影响,设置3个序列间歇式反应器(sequence batch reactor,SBR)R1、R2和R3,以合成配水为基质,高低有机负荷率(organic load rate,OLR)分别为0.67g/(L∙d)、0.67g/(L∙d),0.74g/(L∙d)、0.56g/(L∙d),0.74g/(L∙d)、0.56g/(L∙d);定义有机波动频次为每12天完成高低OLR波动的次数,R1的OLR恒定,R2、R3分别每12天、4天完成一次OLR的高低波动,波动频次分别为0、1、3。由实验结果可知,R1、R2和R3的平均粒径分别可达到318.86μm、426.71μm、593.06μm,胞外聚合物(extracellular polymeric substance,EPS)含量(以volatile suspended solids,VSS计)可达到71.97mg/g、75.88mg/g、80.35mg/g,蛋白质/多糖(protein/polysaccharide,PN/PS)分别为4.24、5.14、5.72,表明波动频次为3时颗粒具有更高的疏水性、稳定性。此外R1、R2、R3的内碳源储存率(internal carbon storage rate,CODin)、同步硝化内源反硝化(simultaneous nitrification internal denitrification rate,SND)率分别为97.06%和44.74%、98.37%和58.20%、98.91%和64.42%、总磷(total phosphorus,TP)平均去除率分别为86.82%、89.36%、92.65%,总氮(total nitrogen,TN)平均去除率分别为71.69%、74.31%、78.55%,说明波动频次为3时颗粒具有更高的碳源利用率与污染物去除能力。 相似文献
3.
4.
研究了连续流反应器中好氧颗粒污泥(AGS)处理无机高氨氮废水的脱氮性能及稳定性。接种成熟AGS启动反应器,前55天内进水氮负荷由1.0 kgm-3d-1逐步提升至4.0 kgm-3d-1,56~125天内氮负荷逐步减小至1.4 kgm-3d-1,126~145天氮负荷再次升高至2.0 kgm-3d-1。前75天内观察到明显的颗粒破碎及污泥流失,且颗粒平均粒径不断减小。虽然多次补充接种AGS以维持系统稳定性,但前90天内颗粒的污泥容积指数(SVI)、胞外聚合物(EPS)及比耗氧速率(SOUR)剧烈波动。受疫情影响,91~109天反应器原位闲置。重新运行后AGS的理化指标逐渐趋于稳定。前45天内氨氮去除率逐渐增大至98%以上,在46~75天内迅速减少至50%左右,此后再次回升至99%以上。总无机氮去除率大部分时间处在35%~45%之间。通过污泥截留试验探索了反应器对污泥的选择性筛分效果。当沉淀池中挡板深度为27 cm时,反应器对污泥的截留率在98%以上,出水污泥粒径多为0~0.30 mm污泥。利用高通量测序分析污泥菌群组成变化。与接种AGS相比,145天时AGS中的硝化细菌属(Nitrosomonas)相对丰度明显增大,而反硝化细菌属(unclassified_Flavobacteriaceae、unclassified_Xanthomonadaceae、Thauera等)的相对丰度略有降低。 相似文献
5.
文章综述了好氧颗粒污泥近年来的研究进展,包括研究概况,形成机制以及颗粒污泥形成的影响因素,最后讨论了好氧颗粒污泥的应用。 相似文献
6.
针对城市污水中重金属离子短期超标影响污水生物处理系统正常运行的问题,采用好氧颗粒污泥SBR反应器,研究了不同浓度Mn(Ⅱ)短期冲击下对好氧颗粒污泥污染物去除性能、外观结构和微生物活性的影响。试验结果表明,好氧颗粒污泥受不同浓度Mn(Ⅱ)10 d的冲击后,COD去除率受Mn(Ⅱ)影响较小,Mn(Ⅱ)会轻微促进AGS对TN的去除。Mn(Ⅱ)分别为0.5、1.0、3.0 mg/L可提高好氧颗粒污泥的活性,在相应浓度的冲击下SOUR分别提高16.0%、108.5%、51.8%,TTC-ETS分别提高了7.7%、112.4%、45.7%。5.0 mg/L Mn(Ⅱ)对SOUR和TTC-ETS的抑制率分别为13.8%和33.5%。 相似文献
7.
8.
好氧颗粒污泥吸附重金属Cd(Ⅱ)的研究 总被引:1,自引:0,他引:1
以好氧颗粒污泥作为一种新型的生物吸附剂,对水中Cd^2+进行吸附研究。分析了初始Cd^2+浓度、初始污泥浓度以及pH值对吸附的影响。试验表明,Langmuir等温方程和Freundlich等温方程都能拟合试验所得吸附数据。当溶液温度维持在25℃时,pH值为6~7时具有较好的吸附效果。在此条件下,当Cd^2+的质量浓度为5~150mg/L.吸附时间为4h时.颗粒污泥最大吸附容量为69.7mg/g,最大去除率为95.9%。这说明颗粒污泥是一种有效的、经济的处理含Cd^2+废水的生物吸附剂。 相似文献
9.
10.
假定颗粒污泥为球状,通过实验确定动力学参数,建立氧传质模型并进行了验证。结果表明,利用失活颗粒污泥DO变化,得出颗粒污泥氧扩散系数为0.45×10-9 m2·s-1;利用烧杯实验,得出了氧比消耗速率0.10 g O2·(g MLSS)-1·h-1,氧半饱和常数为0.65 mg·L-1。模型求解发现,表面DO越大,DO梯度越大,颗粒污泥表面径向传质能力越强,氧穿透颗粒污泥的距离越远,但是粒径很大时(如半径1.5 mm),虽然表面DO为4.0 mg·L-1,但依然没有穿透颗粒污泥,当r/R为0.49~0.65之间时,DO梯度迅速为0;在颗粒污泥半径很小(<0.5 mm)时,氧完全能穿透整个粒径,同时梯尔模数足够小,内扩散有效因子接近1不变,氧扩散可忽略不计;对于相同的梯尔模数,表面DO高时,内扩散有效因子越大,说明氧扩散的动力越强、受限制的程度越小。 相似文献
11.
钢渣颗粒对水中Cr(VI)的吸附与还原作用 总被引:1,自引:0,他引:1
以钢渣颗粒为水处理剂,分析了其组成和结构,研究了钢渣颗粒直接吸附去除水中Cr(VI)的工艺过程及机理. 结果表明,钢渣颗粒在适当的粒度与用量下,经10 min搅拌处理,水中Cr(VI)浓度由200 mg/L降低到0.5 mg/L,达到《污水综合排放标准》(GB8978-1996)的要求. 钢渣颗粒对水中Cr(VI)的吸附符合Langmuir等温吸附过程,对Cr(VI)的饱和吸附量达6.878 mg/g. 化学分析和XPS分析均表明,钢渣颗粒对水中Cr(VI)具有吸附与还原的联合作用,吸附后钢渣颗粒中Cr(III)含量由0.0985%提高到0.39%,而FeO含量由9.20%下降到8.35%. 吸附后钢渣颗粒表面形成了Cr(OH)3,说明钢渣颗粒中FeO充当了还原剂,将水中Cr(VI)吸附于钢渣颗粒表面并还原成了低毒的Cr(OH)3随钢渣颗粒沉降直接从水中去除. 相似文献
12.
13.
14.
采用序批式间歇活性污泥反应器(SBR)研究了进水有机物和氨氮负荷对交替好氧/缺氧短程硝化反硝化生物脱氮工艺的影响。研究结果认为:进水中不同COD和氨氮质量浓度均没有对交替好氧/缺氧短程硝化反硝化生物脱氮工艺中的实时控制参数和处理效果产生影响,系统运行稳定,仅是由于进水COD和氨氮质量浓度的大幅度变化将会导致各自的好氧曝气所需时间有所差异;进水氨氮质量浓度越高,所需硝化时间越长。但经过实时控制以后,无论进水氨氮质量浓度如何变化,硝化和反硝化作用都是很完全的;反应器最终出水中基本检测不到氨氮和亚硝酸盐氮质量浓度。因此,可以得出交替好氧/缺氧短程硝化反硝化生物脱氮工艺抗冲击负荷能力强,当采用实时控制策略控制脱氮过程时,系统运行稳定。 相似文献
15.
采用R1、R2两组SBR反应器,以好氧絮状污泥为接种污泥,通过添加PFS(聚合硫酸铁)作为颗粒污泥造粒晶核及改变各反应器进水有机负荷,力求快速培养出AGS(好氧颗粒污泥)。研究表明,控制R1有机负荷为1.5~4.5 kgCODCr/(m3·d),在第17天时AGS培养成功,其中值粒径为412μm;培养过程中PN(蛋白质)分泌量最高达112.69 mg/g,PN的大量分泌更利于AGS的培养;培养成功的AGS(17~28 d)对CODCr、TN、TP的去除率分别为93%~94%、70%~72%、91%~93%。而控制R2有机负荷为4~6.5 kgCODCr/(m3·d),培养期间进水有机负荷过高,AGS培养失败;在培养过程中PS(多糖)分泌量最高达90.93 mg/g,PS的大量分泌易引发污泥膨胀。 相似文献
16.
在水温(25±1)℃、0.1 mol·L-1 Trise-HCl缓冲液为反应体系并不断通入高纯氮气的厌氧条件下,以小试SBR反应器培养的好氧颗粒污泥为吸附剂,考察了好氧颗粒污泥对氨氮的吸附作用及其影响因素。好氧颗粒污泥表现出比絮体活性污泥更大的对氨氮的吸附容量。当初始氨氮浓度为30 mg·L-1时,颗粒污泥与絮体污泥的吸附容量分别为1.83 mg NH4+-N·(g VSS)-1和1.18 mg NH4+-N·(g VSS)-1。由于细胞之间的遮蔽效应,污泥对氨氮的吸附容量随污泥浓度的升高而降低。盐度(NaCl)显著影响颗粒污泥对氨氮的吸附效果:盐度越高,污泥吸附容量越小。试验结果表明,污泥对氨氮的吸附作用不可忽略且需要进一步深入研究。 相似文献
17.
近年来,水资源短缺以及水体污染问题日益严峻。传统的活性污泥生物水处理技术由于产生大量剩余污泥,在某种程度上限制和影响了该方法在废水处理中的应用。由微生物自凝聚形成的特殊生物膜——好氧颗粒污泥由于具有污泥颗粒结构紧凑致密、沉降性能好、生物量较高,同时具备多种微生物功能、剩余污泥量较少等优势,而备受关注。本文重点论述了好氧颗粒污泥的结构特征、表观气速与溶氧水平,有机负荷、金属离子、代谢方式等外部环境因子对污泥颗粒快速培养和形成过程的影响,微生物菌群结构与颗粒形成机制、以及影响颗粒长期运行过程中稳定性缺失的主要原因,提高好氧颗粒污泥的稳定性的常用措施,以提高人们对好氧颗粒污泥的认识,推动好氧颗粒污泥技术在废水领域中的应用。 相似文献
18.
在水温(25±1)℃、0.1 mol·L?1 Trise-HCl缓冲液为反应体系并不断通入高纯氮气的厌氧条件下,以小试SBR反应器培养的好氧颗粒污泥为吸附剂,考察了好氧颗粒污泥对氨氮的吸附作用及其影响因素。好氧颗粒污泥表现出比絮体活性污泥更大的对氨氮的吸附容量。当初始氨氮浓度为30 mg·L?1时,颗粒污泥与絮体污泥的吸附容量分别为1.83 mg NH+4-N·(g VSS)?1和1.18 mg NH+4-N·(g VSS)?1。由于细胞之间的遮蔽效应,污泥对氨氮的吸附容量随污泥浓度的升高而降低。盐度(NaCl)显著影响颗粒污泥对氨氮的吸附效果:盐度越高,污泥吸附容量越小。试验结果表明,污泥对氨氮的吸附作用不可忽略且需要进一步深入研究。 相似文献
19.
20.
好氧微生物颗粒污泥脱氨机理 总被引:3,自引:0,他引:3
好氧颗粒污泥应用于生物脱氮,机理为如下几种.第一种为常规硝化-反硝化途径.第二种为亚硝化-反硝化途径,颗粒污泥的外部为好氧的硝化区,通过适当的控制,使硝化过程停留在亚硝化阶段,直接进入内层进行反硝化.第三种为硝化-厌氧氨氧化途径,通过外层的硝化和内层的厌氧氨氧化作用实现脱氮.第四种为硝化-反硝化聚磷方式,颗粒污泥内部在反硝化的同时聚磷,实现好氧颗粒污泥同步脱氮除磷.第五种脱氮的途径为好氧反硝化.在不同的条件下,某一种脱氮的途径可能占主导地位. 相似文献