首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
油田压裂返排液处理工艺对油田开采非常重要,一定程度上关系到油田开采效率。油田压裂过程是油田开采中的重要步骤,返排液问题是影响石油开采的重要问题,容易对过滤装置以及过滤膜造成一定的损害,从而影响到油田的开采效果。对油田压裂返排液处理技术进行了分析研究,简要阐述了油田压裂返排液的主要影响,并对当前常用的油田压裂返排液处理技术进行了总结,同时以XX油田返排液处理为例,提出了其处理要点。  相似文献   

2.
针对油田压裂返排液化学试剂含量高、组分复杂、处理难度大的特点,综述了近年来物理法、化学法、生化法、组合法等压裂返排液处理工艺的研究进展,分析了各种处理工艺的优缺点,并对压裂返排液处理工艺的发展方向进行了展望,认为采用组合法处理油田压裂返排液,并对其进行资源化回收利用是压裂返排液处理工艺的发展趋势。  相似文献   

3.
油田压裂返排液具有高黏度、高浊度、高COD、高稳定性的特点,采用单一工艺技术无法实现达标处理。针对此,文章综述了目前油田压裂返排液组合深度处理工艺,分析并指出了各组合工艺的技术特点、适用条件及存在问题,并展望了未来压裂返排液处理技术的潜在发展方向。  相似文献   

4.
随着大量的工业废水的出现,环境问题也成为了炙手可热的话题。压裂返排液的排放,对环境造成了极大的影响。化学的氧化破胶-絮凝-过滤的工艺,作为有效处理返排液的方法,以及各种新型处理的方案出现。同时与生物领域的降解方法联手,将成为解决工业废水的有效途径。  相似文献   

5.
随着大量的工业废水的出现,环境问题也成为了炙手可热的话题。压裂返排液的排放,对环境造成了极大的影响。本实验将采用氧化破胶-多级氧化-絮凝-过滤的工艺。着手于对氧化剂的选择和用量问题展开实验,同时通过对处理后的水样进行COD(化学需氧量)、TOC(有机碳含量)的测定,来鉴定化学计量的选择和使用是否可行。  相似文献   

6.
刘磊 《云南化工》2018,(3):184-185
在开采油田中会出现不少废液和废物,而废液和废物在修井和钻井中又会产生添加剂、无机物和固体悬浮物,一方面在处理上有一定的难度,另一方面会对环境造成污染。在我国健康生态文明的目标下,必须要加强研究无害处处理油田压裂返排液的技术,实现合理利用资源,保护环境的目的。文章主要介绍了油田压裂返排液的主要成分和特征,介绍了压裂返排液的常用处理方法,并探究无害化处理压裂返排液的新技术。  相似文献   

7.
针对压裂返排液水质状况,试验采用混凝工艺预处理压裂返排液。通过单因素变量分析及正交混凝试验,以COD和浊度作为混凝效果的参照指标,试验确定了最佳的混凝工艺:絮凝剂投加量450 mg/L,助凝剂投加量5.0 mg/L,静置时间80 min。其产水浊度、COD及浊度去除率分别达到99.9%、86.5%和87.9%,且产水水质稳定。  相似文献   

8.
9.
徐程  郭礼荣  王凯健 《广州化工》2022,(18):157-158+164
对于东北龙凤地区压裂返排液进行分析,同时结合公司开发的絮凝剂与助凝剂、杀菌剂和缓蚀剂来处理达到注回液的标准。实验研究表明:絮凝剂KD-11-C与助凝剂CPAM-1的组合使用,絮凝效果最佳,其中悬浮物去除率达到92.48%,含油量去除率达到96.03%;杀菌剂KD-24-2和KD-24-3,在投加浓度为300 mg/L,都能完全杀灭废水中的FB、TGB、SRB细菌;缓蚀剂KD-32-3在45 mg/L的投加量下管道的平均腐蚀率达到最低点。  相似文献   

10.
董健 《广东化工》2013,40(12):40-41,12
针对压裂返排液中化学药剂成分较多,具有高黏度、高稳定性等特点,采用预处理、陶瓷膜过滤、电渗析脱盐的工艺开展了压裂返排液处理的室内试验。结果表明:在最优的操作条件下处理后的返排液,COD含量为3078 mg/L,石油类4.3 mg/L,浊度1.73 NTU,色度16倍,电导率降至1.0 mS/cm时Ca2+,Mg2+,Cl-的含量分别为2.635 mg/L,1.09 mg/L,219.04 mg/L。  相似文献   

11.
任祎  李岩  徐自强  姬伟  张凯博  王飞利  李稳宏 《应用化工》2022,(8):2247-2251+2257
鄂尔多斯某油井压裂返排液通过氧化-絮凝-脱钙镁沉淀、二级精细过滤、化学剂耦合离子交换脱硼组合单元去除固悬、钙镁、残余硼,氧化絮凝沉淀过程优化工艺条件:H2O2用量0.1%,Na2CO3加量1 410 mg/L,调节pH至10,PAC加量500 mg/L,PVA加量300 mg/L,PAM加量7.5 mg/L,沉淀30 min;过滤后进行树脂除硼,除硼过程优化工艺条件:调节pH值为9,过滤体积为800 mL,在25℃、150 r/min转速下振荡20 min。处理结果满足压裂返排液重新配液的要求。  相似文献   

12.
压裂作业技术是油气田开采过程中油气井增产增注的主要措施之一,压裂作业结束后有大量的压裂废液返排至地面,成为当前油田水体的主要污染源之一。此类污水具有黏度高、高、悬浮物高等特点,若不经过处理而直接外排,将会对周围环境造成严重污染。本研究在对压裂返排液进行了成分分析的基础上,针对其中的污染物开展了去除工艺研究,形成了"破胶氧化-中和-混凝-过滤"的处理工艺,处理后出水pH为7.4,含油量为1.0mg·L~(-1),悬浮物为4.6mg·L~(-1),黏度为1.2m Pa·s,处理后出水各项指标均达到回注标准。  相似文献   

13.
现阶段,压裂作业作为当前油井增产的重要措施,有着非常重要的作用。另外,在对油井实施压裂时,应适当添加一些助剂,以实现石油增产的目的。此外,由于油田在开展压裂作业时,所产生的返排液对油田水体会造成污染,因此这就要求我们应切实做好对压裂返排液的相关处理工作。本文就结合油田在进行压裂作业的同时存在的问题与现状,对压裂返排液技术进行相应的研究与讨论。  相似文献   

14.
针对井场产生的压裂返排液对环境存在潜在的生态风险,在明确井场废液废固危险特性的基础上,开展针对井场废液的集中化处理,通过高效气浮+催化氧化+接触式膜生物组合工艺,实现废液无害化处理与资源化利用。  相似文献   

15.
卜掌印  朱德儒  刘志前 《辽宁化工》2022,(9):1270-1272,1295
以压裂返排液的危害为切入点,系统性阐述压裂返排液具有危害土壤、处理难度高、成分复杂的特点,如果将其直接排放与环境中,会严重污染土壤、水体,以此为基础,提出压裂返排液处理技术及创新发展方向,从而为相关工作者提供参考。  相似文献   

16.
随着石油产量的增加,水力压裂过程中产生的压裂返排液造成的环境污染也越来越严重。因此,油田公司对压裂返排液的处理不容忽视。本文对国内外的压裂返排液处理方法进行了综合调研,详细介绍了压裂返排液的各种处理技术,并展望了压裂返排液处理技术的发展方向,为油田压裂返排液处理技术的进一步提升提供参考。  相似文献   

17.
王佳  王鹏程  路建萍  沈燕宾  李俊华 《应用化工》2022,(5):1527-1529+1534
对返排液水质进行分析,研究了影响返排液回用的影响因素,压裂返排液处理剂配方为:0.15%高效络合剂+0.1%屏蔽剂+0.1%杀菌灭藻剂。处理后压裂返排液回用的压裂液体系为:0.35%瓜胶+0.35%多效压裂助剂+0.01%专用螯合剂;交联液为低用量多核交联剂+断裂催化剂。结果表明,优化的压裂返排液回用体系具有良好的耐温抗剪切,静态滤失、破胶性能和配伍性。同时形成了配套的回用工艺,采用“破胶降粘-除油-絮凝沉淀过滤-脱硼处理-成分调节”五个工序对压裂液返排液进行处理,实现了压裂返排液的重复再利用。  相似文献   

18.
采用筛选优化絮凝剂、调节p H、优选脱色剂等方法,使压裂返排液发生絮凝、脱色等反应,从而达到净化水质的作用。实验结果表明,在p H=7.5,PAC用量为100mg·L-1、脱色剂用量为30mg·L-1时,压裂返排液处理效果较佳,处理后水悬浮物含量为4.9mg·L-1,油含量为0.9mg·L-1,处理后水到达油田回注水一级标准,减少了压裂返排液的污染问题。  相似文献   

19.
油田压裂及油田开发产生的污水造成了大量水资源的浪费,成为制约油气田开发重要问题之一.本文在分析油田污水及压裂污水特点的基础上,调研了植物脱盐、膜分离、铁碳微电解、紫外光杀菌、捕获离子等处理方法及工艺,分析了不同处理工艺的特点,并提出了油田污水处理发展的方向、油田污水回用的思路.  相似文献   

20.
压裂技术已逐渐成为油田增产的主要手段。随着更加严格的《陆上石油天然气开采工业污染物排放标准》的即将颁布,新疆玛湖油田在未来几年可能会面临大量聚合物型压裂返排液外排的压力。基于高效、低成本的处理要求,开发了“电絮凝预处理+电化学氧化”工艺处理压裂返排液。结果表明:当电絮凝预处理条件为阴阳极板均为铝板、极板间距为0.5 cm、电流密度为10 mA/cm2、通电时间为15 min时,压裂返排液COD去除率达到65.4%,浊度达到4 NTU。对电絮凝预处理后的压裂返排液进行电化学氧化处理,在阳极为镀钌铱钛板、阴极为不锈钢板、电流密度为25 mA/cm2、电源脉冲频率为4 000 Hz、占空比为65%、pH=7.2、反应时间为90 min的条件下,新疆玛湖油田压裂返排液COD可以降至80 mg/L以下,油质量浓度降至1.0 mg/L以下,氨氮降至0.5 mg/L以下,悬浮物降至30 mg/L以下。处理后压裂返排液水质指标满足陆上排放标准要求且成本较低,具有良好的工业应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号