首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3系无铅压电陶瓷的介电压电性能   总被引:2,自引:0,他引:2  
研究了(Na1-xKx)0.5Bi0.5TiO3体系无铅压电陶瓷的介电、压电性能,通过XRD分析,发现随着x的增加,陶瓷的晶体结构由三方相逐渐转变为四方相,x=0.16~0.20范围内具有三方和四方共存相结构,为该体系的准同型相界(MPB),材料在MPB附近具有最佳的压电性能.测试了陶瓷的介电温谱,表明该体系陶瓷为弛豫型铁电体,电滞回线表明陶瓷在升温过程中发生铁电-反铁电-顺电相变.  相似文献   

2.
利用传统陶瓷工艺制备了Bi1/2(Na1-xLix)1/2TiO3(简写BNLT100x,其中x为摩尔含量)系无铅压电陶瓷,研究了该陶瓷的微结构、压电和介电性能。X-射线衍射分析(XRD)结果表明,在x=0~0.20时,Bi1/2(Na1-xLix)1/2TiO3陶瓷为单相三方晶系钙钛矿结构;在x=0.30时,会有影响压电性能的第二相产生。扫描电镜(SEM)结果表明,Li含量越高,陶瓷的烧结温度越低,Li促进了晶粒特定方向的生长;在x=0.15时,压电系数d33达极大值109 pC/N;同时研究了极化工艺条件对材料压电性能的影响。  相似文献   

3.
采用传统固相法制备了新型(1-x)Bi0.5(Na0.8K0.2)0.5TiO3-x(Bi1-yLay)FeO3无铅压电陶瓷,利用了XRD、SEM等测试技术表征了该陶瓷的晶体结构、表面形貌、介电和压电性能.研究结果表明,在所研究的组成范围内陶瓷材料均能形成纯的钙钛矿结构固溶体,陶瓷晶粒尺寸随x、y的增加而增加.压电性能随x的增加先增加后减少,随y的增加先减小后增大,在x=0.005,y=0.9时,压电常数及机电耦合系数达到最大值(d33=149 pC/N,kp=0.27).  相似文献   

4.
Bi0.5(Na1-x-yKxLiy)0.5TiO3压电陶瓷的制备、性能与微结构   总被引:4,自引:2,他引:4  
采用传统陶瓷工艺制备了新型无铅压电陶瓷Bi0.5(Na1-x-yKxLiy)0.5TiO3,研究了制备工艺的稳定性、放大效应、预烧粉体的研磨方式、成型工艺以及烧结方式对陶瓷压电性能的影响。研究结果表明,Bi0.5(Na1-x-yKxLiy)0.5TiO3陶瓷的压电常数d33可达230 pC/N,其机电耦合系数kp可达0.40;采用传统陶瓷工艺能够制备单相钙钛矿结构的Bi0.5(Na1-x-yKxLiy)0.5TiO3陶瓷,制备工艺的稳定性好,放大效应小,预烧粉体的研磨方式对性能的影响小,干压成型的样品压电性能最佳,烧结方式对性能无明显影响。显然,Bi0.5(Na1-x-yKxLiy)0.5TiO3陶瓷具有压电性能优、工艺性好的特点,具有实用化价值。  相似文献   

5.
采用Pechini法成功制备出钛酸铋钠(Bi0.5Na0.5TiO3,简写为BNT)粉体,并利用此粉体烧结出致密的BNT陶瓷。Pechini法所制备的BNT陶瓷具有优良的压电性能,其压电常数d33高达105 pC/N,是目前文献所报道BNT陶瓷压电常数的最高值。室温时只需施加80 kV/cm的测量电压即可获得矩形度极好的饱和电滞回线,其剩余极化强度Pr与矫顽场Ec分别为37μC/cm2和61.2 kV/cm,且在60℃只需施加40 kV/cm的直流电场就可以使陶瓷充分极化。对不同Bi3 含量BNT陶瓷的研究表明,适当的Bi3 含量有利于获得结构致密、晶粒细小的微观结构与较高的铁电、压电性能。  相似文献   

6.
(Na_(1/2)Bi_(1/2))TiO_3-SrTiO_3无铅压电陶瓷的介电、压电性能   总被引:3,自引:0,他引:3  
研究了 (Na1 / 2 Bi1 / 2 ) Ti O3- Sr Ti O3二元系无铅压电陶瓷的介电、压电性性。Sr2 的引入对 NBT材料的常温介电系数、铁电相与反铁电相转变温度 TF A(180°C)以及居里温度 TC(30 0°C)的影响都不大 ,但却较大幅度地降低了 NBT材料的高矫顽场 ,从而使极化相对容易。(Na1 / 2 Bi1 / 2 ) Ti O3- Sr Ti O3二元系的压电性能参数 d33和 kt分别达到 10 0 p C/N和 0 .45  相似文献   

7.
Bi0.5(Na1-xKx)0.5TiO3系陶瓷的压电性质与微观结构   总被引:6,自引:0,他引:6  
利用传统陶瓷工艺制备了Bi0.5(Na1-xKx)0.5TiO3系无铅压电陶瓷,研究了该陶瓷的压电性质与微结构。研究结果表明,Bi0.5(Na1-xKx)0.5TiO3陶瓷的压电常数d33=142.2 pC/N、机电耦合系数kp=0.315;随着K+含量的增加,陶瓷晶粒尺寸有细化的趋势;低K+含量时,陶瓷晶粒的“棱角”相当“钝化”,而高K+含量时,陶瓷晶粒的“棱角”明显而“尖锐”,K+促进了陶瓷晶粒在特定方向的生长;对Bi0.5(Na1-xKx)0.5TiO3陶瓷进行了A位离子改性研究,提出了新型的压电性质优良的BNT基无铅压电陶瓷体系。  相似文献   

8.
9.
利用XRD等现代分析技术,研究了Bi0.5(Na1-x-yKxLiy)0.5TiO3系无铅压电陶瓷的合成温度,烧成工艺条件对陶瓷晶体结构和压电性能的影响.同时研究了极化工艺条件对材料压电性能的影响.结果表明,合成温度的提高有利于主晶相的形成,适当延长烧结保温时间有利于提高材料的压电性能.该体系随着K含量的增加,烧结温度提高及范围变窄.当提高极化电场和极化温度时,有利于压电性能的提高,但过高的温度因受材料高温下退极化的影响而导致材料压电性能变差.  相似文献   

10.
(Na0.5Bi0.5)TiO3陶瓷A位二价金属离子取代的研究   总被引:9,自引:3,他引:9  
主要研究了用Ba^2+、Sr^2+、Ca^2+对钙钛矿结构(ABO3)的无铅压电陶瓷(Na0.5Bi0.5)TiO3(NBT)的A位进行部分取代后材料的介电、压电性能。实验表明,A位Ba^2+取代使NBT的介电系数有明显的增大,而Sr^2+、Ca^2+对NBT的介电系数影响不大。而3种离子A位的取代,都使NBT的高矫顽电场有了大幅度的降低,其中以Ba^2+的效果最为明显(2.5~2.0kV/mm)  相似文献   

11.
BMN掺杂NBT压电陶瓷的介电特性研究   总被引:2,自引:2,他引:2  
采用传统陶瓷制备方法,制备了一种新无铅压电陶瓷材料(1-x)Na1/2Bi1/2TiO3-xBi(Mg2/3Nb1/3)O3.研究了Bi(Mg2/3Nb1/3)O3掺杂对(Na1/2Bi1/2)TiO3陶瓷晶体结构、弥散相变与介电弛豫行为的影响.X-射线衍射(XRD)分析表明,在所研究的组成范围内陶瓷材料均能形成纯钙钛矿固溶体.材料的介电常数-温度曲线显示陶瓷具有2个介电反常峰Tt和Tm,低掺杂的样品低频介电常数在居里温度以上异常增加.该体系陶瓷表现出与典型弛豫铁电体明显不同的弛豫行为.根据宏畴-微畴转变理论探讨了该体系陶瓷产生介电弛豫的机理.  相似文献   

12.
采用传统陶瓷制备方法,制备出一种钙钛矿结构无铅新压电陶瓷材料(1-x)(Na1/2Bi1/2)TiO3-x(Na1/2Bi1/2)(Sb1/2Nb1/2)O3(x=0~1.4%,摩尔分数)。研究了(Na1/2Bi1/2)TiO3(NBT)陶瓷B位复合离子(Sb1/2Nb1/2)4 取代对介电和压电性能的影响。X-射线衍射分析表明,所研究的组成均能形成纯钙钛矿(ABO3)型固溶体。陶瓷材料的介电常数-温度曲线显示陶瓷在升温过程中存在两个介电常数温度峰,不同频率下陶瓷材料的介电常数-温度曲线显示该体系材料具有明显的弛豫铁电体特征。检测了不同组成陶瓷的压电性能,发现材料的压电常数d33、厚度机电耦合系数kt和介电常数rε随着x值的增加先增加后降低,在x=0.8%时,陶瓷的d33=97 pC/N,kt=0.50,为所研究组成中的最大值,介电损耗tanδ则随x值的增加而增加。  相似文献   

13.
14.
采用传统电子陶瓷制备工艺制备(1–y)(Na0.5Bi0.5)TiO3-yBa(ZrxTi1–x)O3无铅压电陶瓷,获得了d33高达185pC/N的0.94(Na0.5Bi0.5)TiO3-0.06Ba(Zr0.055Ti0.945)O3压电陶瓷。对Bi的挥发进行了补偿,添加过量Bi2O3(摩尔分数z=0.08)的钛酸铋钠基压电陶瓷,d33高达218pC/N。研究了Mn掺杂对钛酸铋钠基陶瓷压电、介电性能和损耗的影响,获得了高性能的无铅压电陶瓷,其中d33为214pC/N,kt为0.44,k33为0.52。  相似文献   

15.
利用传统的固相合成法合成了纯钙钛矿结构的钛酸铋钠基压电陶瓷,研究了不同烧结温度下的钛酸铋钠基压电陶瓷的烧结行为,并对烧结过程中陶瓷表面出现第二相的机制进行了模型分析。最后研究了钛酸铋钠基陶瓷系列的电学性能。  相似文献   

16.
Bi0.5(Na1-x-yKxLiy)0.5TiO3陶瓷的介电性能与微观结构   总被引:3,自引:2,他引:3  
利用传统陶瓷工艺制备了新型的Bi0.5(Na1-x-yKxLiy)0.5TiO3无铅压电陶瓷,研究了陶瓷的介电性能和微观结构。研究结果表明,介电常数εr和介质损耗tgδ在K含量为0.20~0.25(摩尔分数)时达到最大值,且随Li含量的增加而增大;介温曲线表明,Bi0.5(Na1-x-yKxLiy)0.5TiO3陶瓷在110~210℃之间出现介质损耗峰,在300~350℃附近出现比较平坦的介电常数峰;陶瓷的最佳烧结条件为1 100~1 150℃,2~3 h;陶瓷晶粒有规则的几何外形,晶粒尺寸为1.2~2.5 m;Li含量越高,陶瓷的烧结温度越低;K促进了晶粒特定方向的生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号