首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5-Fluorocytosine (5-FC), a medically applied antifungal agent (Ancotil), is also active against the model organism Saccharomyces cerevisiae. 5-FC uptake in S. cerevisiae was considered to be mediated by the FCY2-encoded cytosine/adenine permease. By applying a highly sensitive assay, a low-level but dose-dependent toxicity of 5-FC in fcy2 mutants was detected, whereas cells deficient in the cytosine deaminase (encoded by FCY1), which is essential for intracellular conversion of 5-FC to 5-fluorouracil, display strong dose-independent resistance. Thus, an alternative, Fcy2-independent access pathway for 5-FC exists in S. cerevisiae. A genome-wide search for cytosine permease homologues identified two uncharacterized candidate genes, designated FCY21 and FCY22, both of which exhibit highest similarity to FCY2. Disruption of either FCY21 or FCY22 resulted in strains displaying low-level resistance, indicating the functional involvement of both gene products in 5-FC toxicity. When mutations in FCY21 or FCY22 were combined with the FCY2 disruption, both double mutants displayed stronger resistance when compared to the FCY2 mutant alone. Disruptions in all three permease genes consequently conferred the highest degree of resistance, not only towards 5-FC but also to the toxic adenine analogon 8-azaadenine. As residual 5-FC sensitivity was, however, even detectable in the fcy2 fcy21 fcy22 mutant, we analysed the relevance of other FCY2 homologues, i.e. TPN1, FUR4, DAL4, FUI1 and yOR071c, for 5-FC toxicity. Among these, Tpn1, Fur4 and the one encoded by yOR071c were found to contribute significantly to 5-FC toxicity, thus revealing alternative entry routes for 5-FC via other cytosine/adenine permease homologues.  相似文献   

2.
Novel MX cassettes are described that contain the open reading frames (ORFs) of Saccharomyces cerevisiae or Candida albicans LYS5. The LYS5MX and CaLYS5MX cassettes, the targeting efficiencies of which are equivalent to those of other MX cassettes, are positively selected for Lys+ in a lys5 background. Unlike most of the other MX cassettes, the LYS5MX cassettes are also negatively selectable (alpha-aminoadipate-resistant), which will allow the use of the LYS5MX cassettes in plasmid shuffling and will also greatly facilitate marker recycling.  相似文献   

3.
Heterologous gene replacement cassettes are powerful tools for dissecting gene function in Saccharomyces cerevisiae. Their primary advantages over homologous gene replacement cassettes include reduced gene conversion (leading to efficient site-specific integration of the cassette) and greater independence of strain background. Perhaps the most widely used cassettes are the MX cassettes containing the dominant selectable kanamycin resistance gene (kanr), which confers resistance to G418 (Wach et al., 1994). One limitation of the kanMX cassettes is that they are not counterselectable and therefore not readily recyclable, which is important when constructing strains with more than one gene deletion. To address this limitation, and to expand the choices of heterologous markers, we have created two new MX cassettes by replacing the kanr ORF from plasmids pFA6-kanMX3 and pFA6-kanMX4 with the Candida albicans URA3 ORF. These plasmids, pAG60 (CaURA3MX4) and pAG61 (CaURA3MX3) are identical to the kanMX cassettes in all other respects but have the added advantage of being counterselectable and therefore readily recyclable in S. cerevisiae.  相似文献   

4.
Mutants unable to grow on medium containing glutathione as a sole source of sulphur (GSH medium) were isolated from Saccharomyces cerevisiae strains carrying met17(deficiency of O-acetylserine and O-acetylhomoserine sulphydrylase). They were defective in the high-affinity glutathione transport system, GSH-P1. Newly acquired mutations belonged to the same complementation group, gsh11. However, it became apparent that gsh11 conferred the mutant phenotype not by itself but in collaboration with met17. Moreover, mutations conferring the defect in sulphate assimilation made the cell unable to grow on GSH medium in collaboration with gsh11. From this finding, we propose that the sulphate assimilation pathway acts as a sulphur-recycling system and that this function is especially vital to the cell when the supply of glutathione is limited.  相似文献   

5.
Disruption-deletion cassettes are powerful tools used to study gene function in many organisms, including Saccharomyces cerevisiae. Perhaps the most widely useful of these are the heterologous dominant drug resistance cassettes, which use antibiotic resistance genes from bacteria and fungi as selectable markers. We have created three new dominant drug resistance cassettes by replacing the kanamycin resistance (kan(r)) open reading frame from the kanMX3 and kanMX4 disruption-deletion cassettes (Wach et al., 1994) with open reading frames conferring resistance to the antibiotics hygromycin B (hph), nourseothricin (nat) and bialaphos (pat). The new cassettes, pAG25 (natMX4), pAG29 (patMX4), pAG31 (patMX3), pAG32 (hphMX4), pAG34 (hphMX3) and pAG35 (natMX3), are cloned into pFA6, and so are in all other respects identical to pFA6-kanMX3 and pFA6-kanMX4. Most tools and techniques used with the kanMX plasmids can also be used with the hph, nat and patMX containing plasmids. These new heterologous dominant drug resistance cassettes have unique antibiotic resistance phenotypes and do not affect growth when inserted into the ho locus. These attributes make the cassettes ideally suited for creating S. cerevisiae strains with multiple mutations within a single strain.  相似文献   

6.
The alpha-glucosidase gene of Candida tsukubaensis is contained within a 3.47 kb BamH1-Mlul fragment which, when introduced into Saccharomyces cerevisiae AH22 on a yeast-Escherichia coli shuttle vector, allows the transformants to utilize maltose as sole carbon source. Thus, the cloned gene confers a dominant selectable phenotype on transformed strains of S. cerevisiae which are otherwise unable to grow in nutrient media containing maltose, dextrin or other alpha-1.4-linked alpha-D-glucopyranosides, specifically hydrolysed by the alpha-glucosidase. The cloned enzyme expressed in yeast is secreted into the extracellular medium in a glycosylated form which accounts for up to 60% of the secreted protein and has a molecular size of 70-80 kilodalton (kDa). Deglycosylation of the alpha-glucosidase showed that the enzyme is composed of two distinct polypeptides with subunit molecular weights of 63-65 kDa (peptide 1) and 50-52 kDa (peptide 2). An increase in the level of expression of the alpha-glucosidase by yeast transformants in selective minimal medium was obtained by using a vector with increased copy number containing the leu2-d gene as selectable marker. The alpha-glucosidase gene promoter functions more effectively than the Gall-10 promoter in directing alpha-glucosidase expression in S. cerevisiae. It also directs the expression of high levels of beta-galactosidase activity in yeast when fused to a promoterless E. coli lacZ gene. Expression of the alpha-glucosidase gene under the control of its own promoter is constitutive, orientation dependent and not subject to catabolite repression.  相似文献   

7.
Recombinant strains of Saccharomyces cerevisiae with the ability to reduce wine acidity could have a significant influence on the future production of quality wines, especially in cool climate regions. L-Malic acid and L-tartaric acid contribute largely to the acid content of grapes and wine. The wine yeast S. cerevisiae is unable to effectively degrade L-malic acid, whereas the fission yeast Schizosaccharomyces pombe efficiently degrades high concentrations of L-malic acid by means of a malo-ethanolic fermentation. However, strains of Sz. pombe are not suitable for vinification due to the production of undesirable off-flavours. Heterologous expression of the Sz. pombe malate permease (mae1) and malic enzyme (mae2) genes on plasmids in S. cerevisiae resulted in a recombinant strain of S. cerevisiae that efficiently degraded up to 8 g/l L-malic acid in synthetic grape must and 6.75 g/l L-malic acid in Chardonnay grape must. Furthermore, a strain of S. cerevisiae containing the mae1 and mae2 genes integrated in the genome efficiently degraded 5 g/l of L-malic acid in synthetic and Chenin Blanc grape musts. Furthermore, the malo-alcoholic strains produced higher levels of ethanol during fermentation, which is important for the production of distilled beverages.  相似文献   

8.
Rhodococcus erythropolis strain KA2-5-1 is unable to desulfurize 4,6-dipropyl dibenzothiophene (DBT) in the oil phase. The dsz desulfurization gene cluster from R. erythropolis strain KA2-5-1 was transferred into 22 rhodococcal and mycobacterial strains using a transposon-transposase complex. The recombinant strain MR65, from Mycobacterium sp. NCIMB10403, was able to grow on a minimal medium supplemented with 1.0 mM 4,6-dipropyl DBT in n-tetradecane (50%, v v ) as the sole sulfur source. Resting cells of recombinant strain MR65 could desulfurize 68 mg l- of sulfur in light gas oil (LGO) containing 126 mg sulfur l-. Strain MR65 had about 1.5-times the LGO desulfurization activity of R. erythropolis strain KA2-5-1. The application of a recombinant, which is able to utilize 4,6-dipropyl DBT in the oil phase, was effective in enhancing LGO biodesulfurization.  相似文献   

9.
The short flanking homology PCR strategy (Wach et al., 1994) was used to disrupt six open reading frames (ORFs) on chromosome X of diploid strains (FY1679 and W303) of the yeast Saccharomyces cerevisiae. Two of the six ORFs analysed (YJL069c and YJL066c) display no similarity to known sequences. Three others (YJL065c, YJL068c, and YJL070c) are similar to those respectively encoding the DNA polymerase epsilon subunit c, human esterase D and rat AMP deaminase 1. YJL071w has recently been identified as the ARG2 gene coding for acetylglutamate synthase. Inactivation of the YJL069c gene proved lethal and the yjl071w haploid disruptants were auxotrophic for arginine. For the four other gene inactivations, neither the heterozygous deletion diploids nor the corresponding haploid deletion mutants displayed any special phenotype when grown on rich glycerol or glucose medium or on synthetic minimal medium at three different temperatures, or on media containing compounds interfering with nucleic acid or protein synthesis. Mating and sporulation efficiencies were the same for the viable disruptants as for wild-type cells. The six kanMX4 disruption cassettes were cloned into the pUG7 vector and each of the cognate wild-type genes was inserted into the pRS416 centromeric plasmid. All strains and plasmids have been deposited in the EUROFAN collection (EUROSCARF, K. -D. Entian, Frankfurt, Germany).  相似文献   

10.
以烟台产区白玉霓葡萄为原料酿造白兰地,研究3种酿酒酵母(Saccharomyces cerevisiae)D254、QA23、FC9对白兰地香气成分的影响。结果表明,3种酿酒酵母酿造的白兰地共检测出69种挥发性成分,其中酵母D254产生的萜烯类、醛酮类、有机酸类和芳香类含量较高;酵母QA23产生的酯类、醇类和缩醛类含量较高;酵母FC9产生各类挥发性化合物含量比较均衡。主成分分析(PCA)结果表明,选用酵母D254与酵母QA23、FC9有明显的差异性;但酵母QA23与FC9之间的差异性不显著。  相似文献   

11.
Increased expression of certain ER membrane proteins leads to biogenesis of novel ER membrane arrays. These structures provide models in which to explore the mechanisms by which cells control the size and organization of organelles in response to changing physiological demands. In yeast, elevated levels of HMG-CoA reductase induce ER arrays known as karmellae. Cox and co-workers (1997) discovered that karmellae assembly is toxic to ire1 mutants. These mutants are unable to initiate the unfolded protein response, which enables cells to adjust levels of ER chaperones in response to stresses. We sought to determine whether the karmellae-dependent death of ire1 mutants was due to karmellae assembly or to increased levels of HMG-CoA reductase activity. Unexpectedly, we found that ire1 cells could assemble normal levels of karmellae that were structurally identical to those of wild-type cells. In addition, karmellae assembly did not itself induce the unfolded protein response. Certain ire1 strains produced significant numbers of transformants that were unable to utilize galactose as sole carbon source. These results suggest that the karmellae-dependent death of certain ire1 strains may simply reflect their inability to grow on galactose.  相似文献   

12.
Co-consumption of formate by aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae CEN.PK 113-7D led to an increased biomass yield relative to cultures grown on glucose as the sole carbon and energy substrate. In this respect, this strain differed from two previously investigated S. cerevisiae strains, in which formate oxidation did not lead to an increased biomass yield on glucose. Enzyme assays confirmed the presence of a formate-inducible, cytosolic and NAD(+)-dependent formate dehydrogenase. To investigate whether this enzyme activity was entirely encoded by the previously reported FDH1 gene, an fdh1Delta null mutant was constructed. This mutant strain still contained formate dehydrogenase activity and remained capable of co-consumption of formate. The formate dehydrogenase activity in the mutant was demonstrated to be encoded by a second structural gene for formate dehydrogenase (FDH2) in S. cerevisiae CEN.PK 113-7D. FDH2 was highly homologous to FDH1 and consisted of a fusion of two open reading frames (ORFs) (YPL275w and YPL276w) reported in the S. cerevisiae genome databases. Sequence analysis confirmed that, in the database genetic background, the presence of two single-nucleotide differences led to two truncated ORFs rather than the full-length FDH2 gene present in strain CEN.PK 113-7D. In the latter strain background an fdh1Deltafdh2Delta double mutant lacked formate dehydrogenase activity and was unable to co-consume formate. Absence of formate dehydrogenase activity did not affect growth on glucose as sole carbon source, but led to a reduced biomass yield on glucose-formate mixtures. These findings are consistent with a role of formate dehydrogenase in the detoxification of exogenous formate.  相似文献   

13.
A DNA fragment of Saccharomyces cerevisiae with high homology to the acetyl-coenzyme A (acetyl-CoA) synthetase genes of Aspergillus nidulans and Neurospora crassa has been cloned, sequenced and mapped to chromosome I. It contains an open reading frame of 2139 nucleotides, encoding a predicted gene product of 79.2 kDa. In contrast to its ascomycete homologs, there are no introns in the coding sequence. The first ATG codon of the open reading frame is in an unusual context for a translational start site, while the next ATG, 24 codons downstream, is in a more conventional context. Possible implications of two alternative translational start sites for the cellular localization of the enzyme are discussed. A stable mutant of this gene, obtained by the gene disruption technique, had the same low basal activity of acetyl-CoA synthetase as wild-type cells when grown on glucose but completely lacked the strong increase in activity upon entering the stationary phase, providing direct proof that the gene encodes an inducible acetyl-CoA synthetase (ACS1) of yeast. As expected, the mutant was unable to grow on acetate as sole carbon source. Nevertheless, it showed normal induction of isocitrate lyase on acetate media, indicating that activity of acetyl-CoA synthetase is dispensable for induction of the glyoxylate cycle in S. cerevisiae. Surprisingly, disruption of the ACS1 gene did not affect growth on media containing ethanol as the sole carbon source, demonstrating that there are alternative pathways leading to acetyl-CoA under these conditions.  相似文献   

14.
In Saccharomyces cerevisiae, the structural genes PDC1, PDC5 and PDC6 each encode an active pyruvate decarboxylase. Replacement mutations in these genes were introduced in a homothallic wild-type strain, using the dominant marker genes APT1 and Tn5ble. A pyruvate-decarboxylase-negative (Pdc) mutant lacking all three PDC genes exhibited a three-fold lower growth rate in complex medium with glucose than the isogenic wild-type strain. Growth in batch cultures on complex and defined media with ethanol was not impaired in Pdc strains. Furthermore, in ethanol-limited chemostat cultures, the biomass yield of Pdc and wild-type S. cerevisiae were identical. However, Pdc S. cerevisiae was unable to grow in batch cultures on a defined mineral medium with glucose as the sole carbon source. When aerobic, ethanol-limited chemostat cultures (D = 0·10 h−1) were switched to a feed containing glucose as the sole carbon source, growth ceased after approximately 4 h and, consequently, the cultures washed out. The mutant was, however, able to grow in chemostat cultures on mixtures of glucose and small amounts of ethanol or acetate (5% on a carbon basis). No growth was observed when such cultures were used to inoculate batch cultures on glucose. Furthermore, when the mixed-substrate cultures were switched to a feed containing glucose as the sole carbon source, wash-out occurred. It is concluded that the mitochondrial pyruvate dehydrogenase complex cannot function as the sole source of acetyl-CoA during growth of S. cerevisiae on glucose, neither in batch cultures nor in glucose-limited chemostat cultures.  相似文献   

15.
Yeasts of the genus Zygosaccharomyces are notable agents of large-scale food spoilage. Despite the economic importance of these organisms, little is known about the stress adaptations whereby they adapt to many of the more severe conditions of food preservation. In this study it was shown that genes of Z. bailii, a yeast notable for its high resistances to food preservatives and ethanol, can be isolated by complementation of the corresponding mutant strains of Saccharomyces cerevisiae. It was also discovered that the acquisition by S. cerevisiae of a single small Z. bailii gene (ZbYME2) was sufficient for the former yeast to acquire the ability to degrade two major food preservatives, benzoic acid and sorbic acid. Using DNA cassettes containing dominant selectable markers and methods originally developed for performing gene deletions in S. cerevisiae, the two copies of ZbYME2 in the Z. bailii genome were sequentially deleted. The resulting Zbyme2/Zbyme2 homozygous deletant strain had lost any ability to utilize benzoate as sole carbon source and was more sensitive to weak acid preservatives during growth on glucose. Thus, ZbYME2, probably the nuclear gene for a mitochondrial mono-oxygenase function, is essential for Z. bailii to degrade food preservatives. This ability to catabolize weak acid preservatives is a significant factor contributing to the preservative resistance of Z. bailii under aerobic conditions. This study is the first to demonstrate that it is possible to delete in Z. bailii genes that are suspected as being important for growth of this organism in preserved foods and beverages. With the construction of further mutant of Z. bailii strains, a clearer picture should emerge of how this yeast adapts to the conditions of food preservation. This information will, in turn, allow the design of new preservation strategies. GenBank Accession Nos: ZbURA3 (AF279259), ZbTIM9 (AF279260), ZbYME2 (AF279261), ZbTRP1 (AF279262), ZbHHT1(AF296170).  相似文献   

16.
Six open reading frames (ORFs) of unknown function from the right arm of Saccharomyces cerevisiae chromosome XII were deleted in two genetic backgrounds by disruption cassettes with regions of short flanking homology. This work was carried out within the framework of the EUROFAN consortium. The SFH disruption cassettes, obtained by PCR, were made by amplification of the kanMX marker module with oligonucleotides containing approximately 40 bp of homology to either the promoter or translation terminator regions of the relevant ORF. Transformants resistant to geneticin (G418) were selected. The SFH disruption cassettes were cloned into a bacterial vector. Each cognate gene was also cloned into a yeast centromeric plasmid. Sporulation and tetrad analysis of the disrupted heterozygous strains revealed that ORF YLR153c (now known as ACS2) is essential. Basic phenotypic analysis was performed on haploid deletants of both mating types of the five non-essential ORFs, YLR082c (now known as SRL2), YLR149c, YLR151c, YLR152c and YLR154c. Plate growth tests on different media at 15 degrees C, 30 degrees C and 37 degrees C did not reveal any significant differences between parental and mutant cells. Mating and sporulation efficiencies were not affected in any of the viable disruptants as compared to wild-type cells.  相似文献   

17.
Scheffersomyces stipitis PJH was mutagenized by random integrative mutagenesis and the integrants were screened for lacking the ability to grow with glutamate as sole carbon source. One of the two isolated mutants was damaged in the COX5 gene, which encodes a subunit of the cytochrome c oxidase. BLAST searches in the genome of Sc. stipitis revealed that only one singular COX5 gene exists in Sc. stipitis, in contrast to Saccharomyces cerevisiae, where two homologous genes are present. Mutant cells had lost the ability to grow with the amino acids glutamate, proline or aspartate and other non-fermentable carbon sources, such as acetic acid and ethanol, as sole carbon sources. Biomass formation of the mutant cells in medium containing glucose or xylose as carbon source was lower compared with the wild-type cells. However, yields and specific ethanol formation of the mutant were much higher, especially under conditions of higher aeration. The mutant cells lacked both cytochrome c oxidase activity and cyanide-sensitive respiration, whereas ADH and PDC activities were distinctly enhanced. SHAM-sensitive respiration was obviously essential for the fermentative metabolism, because SHAM completely abolished growth of the mutant cells with both glucose or xylose as carbon source.  相似文献   

18.
Availability of the complete sequence of the Candida albicans genome allows for global gene analysis. We designed a gene deletion method to facilitate such studies. First, we constructed C. albicans strains that are both Deltaura3 and Deltatrp1. Second, we designed a system that relies on in vitro recombination, using the Gateway((R)) technology, for efficient generation of deletion cassettes. They are generated in two steps: (a) upstream and downstream DNA fragments of the chromosomal region to be deleted are amplified by PCR and introduced into two separate entry vectors; (b) the second step involves a quadruple recombination event including the two entry vectors, a plasmid bearing a marker of interest and a destination vector, in order to generate a plasmid containing the deletion cassette. The deletion plasmid contains very rare restriction sites for convenient excision of the knockout cassette. Selection in C. albicans can be performed with one of the following markers: the C. albicans URA3 gene, a modified S. cerevisiae TRP1 gene or the mycophenolic acid resistance (MPA(R)) gene. Upon integration into the genome, these markers can be removed by the use of 5-fluoroorotic acid (URA3), 5-fluoroanthranilic acid (TRP1) or the FLP recombinase (MPA(R)). Using this approach, we show that removal of the C. albicans orf19.1035 gene results in sensitivity to the weak acid sorbate, while its overexpression increases resistance to this compound. We named it WAR1, in analogy to its S. cerevisiae orthologue.  相似文献   

19.
We report here basic functional analysis of strains deleted for six open reading frames (ORFs), YNL059c and YNL148c from chromosome XIV and YOR145c, YOR152c, YOR161c and YOR162c from chromosome XV of Saccharomyces cerevisiae. ORFs were replaced with the KanMX4 resistance marker using a long flanking homology PCR strategy in FY1679 and W303 diploid strains. Replacement cassettes were constructed in plasmid pUG7 and the cognate wild-type genes were recovered by gap repair. Sporulation and tetrad analysis revealed that deletion of YNL059c/ARP5 was lethal for vegetative growth in strain W303 and caused severe growth defects in strain FY1679 while YOR145c was essential for growth in both strains. Fusion of the green fluorescent protein (GFP) gene to the 3' ends of the YNL059c/ARP5 and YOR145c coding sequences created functional chimeric genes at the respective chromosomal loci. Both Arp5-GFP and Yor145-GFP localized to the nucleus, Yor145-GFP concentrating in the nucleolus. The vectors containing the deletion cassettes and the cognate wild-type genes, the oligonucleotides, and the deletant strains are available from the EUROFAN resource centre EUROSCARF (Frankfurt).  相似文献   

20.
A cell surface engineering system of yeast Saccharomyces cerevisiae has been established and novel yeasts armed by biocatalysts (enzymes-glucoamylase, alpha-amylase, CM-cellulase, beta-glucosidase, and lipase), termed "arming yeasts", were constructed. The gene encoding Rhizopus oryzae glucoamylase with its secretion signal peptide was fused with the gene encoding the C-terminal half of yeast alpha-agglutinin and expressed in S. cerevisiae. Glucoamylase was shown to be displayed on the cell surface in its active form and anchored covalently to the cell wall. S. cerevisiae itself is unable to utilize starch, while the surface-engineered yeast could grow on starch as the sole carbon source. For further improvement of the ability to directly ferment starchy materials by the cell surface-engineered yeast, engineered yeasts displaying two amylolytic enzymes on the cell surface were constructed. The gene encoding R. oryzae glucoamylase with its own secretion signal peptide and a truncated fragment of the alpha-amylase gene from Bacillus stearothermophilus with the prepro secretion signal sequence of the yeast alpha-factor were fused with the gene encoding the C-terminal half of the yeast alpha-agglutinin. The surface-engineered yeast co-displaying glucoamylase and alpha-amylase by the integration of their genes into the chromosomes could grow faster on starch as the sole carbon source than the engineered cells displaying only glucoamylase. The system was further applied to the construction of a novel cellulose-utilizing yeast by displaying cellulolytic enzymes in their active form on the cell surface of S. cerevisiae. Engineered yeasts co-displaying FI-carboxymethylcellulase (CM-cellulase), one of the endo-type cellulases, and beta-glucosidase from Aspergillus aculeatus on their cell surface were also constructed. The yeasts displaying these cellulases were given the ability to assimilate cellooligosaccharide, suggesting the possibility that the assimilation of cellulosic materials may be carried out by S. cerevisiae displaying heterologous cellulase proteins on the cell surface. The system has also been used for the cell surface display of R. oryzae lipase (ROL). Linker peptides (spacers) consisting of the Gly/Ser repeat sequence were inserted at the C-terminal portion of ROL to enhance the lipase activity. The insertion of an appropriate length of a linker peptide as a spacer is effective in the display of ROL, having the active region at the C-terminal portion, on the cell surface. Thus, cell surface engineering will be capable of conferring novel additional abilities upon living cells and will herald a new era in the field of biotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号