首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
通过在三聚氰胺-尿素-甲醛树脂(MUF)合成反应的不同阶段添加氧化木薯淀粉,制备得到了不同系列树脂,分别为MUF0、MUF1和MUF2,并对其基本性能及粘接强度进行了测试和分析。为了进一步了解氧化木薯淀粉对MUF树脂固化反应的影响,借助差示扫描量热分析仪(DSC)对树脂在不同升温速率条件下的固化特征参数及固化行为进行了表征。结果表明,在合成反应不同阶段加入氧化木薯淀粉,可有效提升树脂的粘接性能并降低树脂中的游离甲醛含量,特别是在树脂合成反应的第3阶段进行添加,效果更为显著。利用Kissinger方程对不同树脂的固化动力学参数进行分析,得到了树脂固化反应的表观活化能E a,表观频率因子A和反应级数n,并建立了固化反应动力学模型。在本试验条件下,树脂经过氧化木薯淀粉改性后,虽然固化所需活化能有不同程度的提高,但可形成更高的粘接强度。  相似文献   

2.
采用非等温示差法分析了碳纳米管改性酚醛固化反应过程,运用Kissinger和Ozawa法对其进行了动力学研究,得到了反应活化能。结果表明:碳纳米管改性PF树脂的固化反应为吸热反应;相应的峰始温度(Ti)为106.4℃,峰顶温度(Tp)为118.2℃,峰终温度(Tf)为157.6℃,固化体系的表观活化能Ea为111.094 kJ/mol,频率因子为9.56×10-5/s,反应级数为0.965,并得到了固化反应动力学方程。  相似文献   

3.
采用硅烷偶联剂表面处理过的纳米二氧化硅作为无机填料改性氰酸酯树脂/聚苯醚固化体系,并利用非等温差示扫描量热法研究了氰酸酯树脂/聚苯醚/纳米二氧化硅电子封装材料的固化动力学。结果表明,氰酸酯树脂/聚苯醚/3%纳米二氧化硅固化体系的凝胶温度为150℃、固化温度为181℃、后处理温度为239℃;固化动力学参数表观活化能为15.46kJ/mol、反应级数为0.82、频率因子为38174.38s-1;加入纳米二氧化硅可以降低氰酸酯树脂/聚苯醚固化体系的表观活化能,使其固化反应可以在较低温度下进行。  相似文献   

4.
酚醛型环氧树脂改性氰酸酯共聚物固化反应动力学研究   总被引:2,自引:1,他引:1  
采用差示扫描量热法(DSC)对酚醛型环氧树脂改性双酚A型氰酸酯树脂的固化反应动力学进行了研究,用Kissin-ger方程计算出树脂的表观活化能,其计算值为60.81kg/mol,用Crane定理求得反应级数为0.8846.用外推法求得树脂体系的起始固化温度为120.00℃,峰顶固化温度为176.67℃,终止固化温度为226.67℃.由树脂的DSC和流变分析得到了合理的固化工艺,玻璃纤维织物/改性氰酸酯复合材料具有良好的力学性能.  相似文献   

5.
为探讨高比例尿素改性PF(酚醛树脂)的固化特性,采用差示扫描量热分析(DSC)方法,对不同升温速率条件下树脂的固化过程、特征放热峰温度等进行了检测分析;通过Kissinger和Ozawa方法,计算了固化反应表观活化能,建立了固化反应动力学模型。研究结果表明:高比例尿素改性PF树脂的固化反应活化能较低,反应易于进行,固化温度为131.3℃,较普通PF树脂降低了近20℃。  相似文献   

6.
采用差示扫描量热(DSC)法对5405 BMI树脂的固化反应动力学进行研究。利用Kissinger方程和Crane方程分别得出不同升温速率下的非等温固化反应表观活化能(Ea)63.438 k J/mol,表观频率因子(A)2.25×104 S-1及反应级数(n)0.844。以自催化反应动力学模型为基础,建立了5405 BM I树脂的动态固化反应动力学方程。同时采用反应温度-升温速率外推法,获得了5405 BMI树脂的固化反应特征温度,凝胶化温度(Tgel.)153.2℃,固化温度(Tcur.)195.8℃,后处理温度(Ttre.)258.2℃。为优化树脂在实际应用中的固化工艺提供了一定的理论参考数据。  相似文献   

7.
采用DSC热分析对S酚醛树脂的固化过程进行了动力学研究,得出了该树脂的固化工艺温度及固化动力学参数,其凝胶化温度、固化温度和后处理温度分别为360.7K、421.6K和463.4K;反应级数n=0.912、表观活化能E=76.14kJ·mol^-1,反应频率因子A=4.704×10^8min^-1。采用红外光谱分析初步探讨了该树脂的固化机理,结果表明其固化反应主要是苄羟基与苯环邻位上活泼氢产生交联缩合反应,少量为苄羟基之间的缩合反应。  相似文献   

8.
DSC法研究不饱和聚酯树脂的固化反应动力学及其固化过程   总被引:2,自引:0,他引:2  
周杰  曹国荣  王巍  崔丽荣 《玻璃纤维》2011,(5):16-20,24
采用示差扫描量热法(DSC)分别研究了Ashland UP(R36)以及DSMUP(972B)这两种不饱和聚酯树脂(UP)的固化过程,并利用了KiSSinger方程、Crane经验方程等分析了这两种树脂的固化反应,得到了其固化反应的表观活化能、Arrhenius指前因子(频率因子)、反应级数等动力学参数,最后利用Y—B外推法确定了这两种不同树脂的凝胶温度、固化温度和后固化温度等固化工艺温度。  相似文献   

9.
通过示差扫描分析法(DSC)研究了SiO2/氰酸酯树脂(CE)/含有活性稀释剂的双马来酰亚胺树脂(BMI)复合材料的固化动力学,求得其固化工艺参数为:凝胶温度87.13℃,固化温度137.27℃,后处理温度203.58℃;用Kissinger法和Ozawa法求得其固化动力学参数为:表观活化能6.692kJ/mol,反应级数1.493,Arrhenius方程中的频率因子11.9445s-1。与CE/BMI体系对比表明,SiO2的加入可以降低CE/BMI体系的活化能,使其固化反应可以在较低温度下进行。  相似文献   

10.
通过对芳基乙炔树脂的固化动力学研究确定其适宜的固化工艺。采用DSC和流变分析得到芳基乙炔树脂的特征固化参数及其固化度与温度的关系曲线。结果表明,树脂的起始反应温度为127.1℃,反应峰值温度164.2℃,终止反应温度195.1℃。固化动力学参数为:表观活化能E=190.12kJ/mol,反应级数n=1.87,频率因子A=1.995×1019。芳基乙炔树脂的加压固化温度为110~115℃,其起始固化温度为115℃。固化工艺为:115℃/8h+120℃/8h+140℃/2h+160℃/2h+180℃/2h+200℃/2h+220℃/4h。芳基乙炔树脂凝胶前固化过程由化学反应控制,凝胶后属于扩散控制,因此在凝胶时需延长固化时间。  相似文献   

11.
介绍了三聚氰胺-尿素-甲醛(MUF)共缩聚树脂的合成以及反应后期不同尿素加入量对MUF共缩聚树脂性能的影响。同时借助DSC热分析仪考察了MUF的固化特征,结果表明:反应后期补加尿素主要影响MUF树脂固化吸收总热量及峰值温度,而且在固化剂加入前后,表现出了不同的固化反应。随着最后一次尿素加入量的增加,总体吸热量在逐渐下降。使用MUF共缩聚树脂压制的胶合木,其物理力学性能可以达到JAS中的相关指标。  相似文献   

12.
三聚氰胺添加方式对MUF胶粘剂性能的影响   总被引:1,自引:1,他引:0  
以三聚氰胺作为脲醛树脂(UF)的共聚改性剂制备MUF(三聚氰胺甲醛树脂)胶粘剂。探讨了三聚氰胺的添加方式对MUF胶粘剂性能的影响,同时对其固化特性、分子结构和耐热性等进行了分析。结果表明:三聚氰胺2次投料法可有效降低MUF胶粘剂的甲醛释放量,但其胶接强度也随之下降;同时,该MUF固化体系的外推固化温度、表观活化能和反应级数均有所增加,耐热性降低;另外,2次投料体系使MUF的相对分子质量降低、相对分子质量分布变宽。  相似文献   

13.
柔性UPR树脂/粉煤灰非等温固化动力学   总被引:1,自引:0,他引:1  
王世兵  张奇志 《广州化工》2010,38(8):131-133,151
用差示扫描量热法(DSC)研究了柔性不饱和聚酯树脂/粉煤灰体系的非等温固化过程,利用T-β外推法确定了体系的固化工艺温度:凝胶温度257.625K、固化温度374.275K、后处理温度406.565K。用Flynn-Wall-Ozawa法和Friedman-Reich-Levi法获得了柔性UPR固化反应表观活化能为Ea=83.94kJ·mol-1。由ASTME698-79标准方法求得指前因子,lnA=25.27;结合Crane方程分析知,复合体系的固化反应接近于一级反应。最终建立了复合体系固化反应动力学方程为ln(ddαt)=25.27-10096.22T+ln(1-α)0.9126。  相似文献   

14.
王辉  杜官本 《粘接》2012,(1):43-46
以三聚氰胺、尿素、甲醛为主要原料,合成了三聚氰胺-尿素-甲醛(MUF)共缩聚树脂。考查了不同合成方法对MUF共缩聚树脂性能的影响。结果表明,不同合成工艺对树脂的甲醛含量以及稳定性有重要影响。DSC分析发现,在相同固化条件下,以工艺2合成的MUF树脂固化速度更快。用MUF制备的胶合木的性能,均可满足日本JAS中的规定。  相似文献   

15.
用差示扫描量热法(DSC)对混合型聚酯树脂进行固化动力学研究,确定了该体系的特征参数:起始固化温度(T0)、恒温固化温度(Tp)和后处理温度(Tf)分别为68℃、143℃、168℃。同时通过Kissinger以及Crane方程计算出该体系的固化反应表观活化能E为76.19 kJ/mol、反应级数n为0.913,指前因子A为4.35×108,确定了该体系的固化动力学方程。通过等温固化对该体系的研究得到了不同固化温度下转化率变化曲线,用非等温固化研究得到的动力学方程与等温固化得到的曲线进行比较研究,为优化混合型粉末涂料固化工艺提供了理论依据。  相似文献   

16.
赵明  杨明山 《广州化工》2009,37(4):69-71
研究了邻甲酚醛环氧树脂/苯代三聚氰胺酚醛树脂的固化反应机理,邻甲酚醛环氧树脂(o—CFER)被固化剂苯代三聚氰胺酚醛树脂(BPR)固化,采用非等温扫描方法研究环氧树脂固化反应,用来确定其固化反应动力学参数以及最佳固化工艺条件。用差示扫描量热仪(DSC)对邻甲酚醛环氧树脂固化体系的固化反应过程进行了分析。采用不同升温速率,用Kissinger方法求得体系固化反应的表观活化能△E=63.6kJ/mol,根据Crane理论计算得到该体系的固化反应级数n=0.899。固化反应起始温度、峰值温度、终止温度分别为Tio=102.95℃、Tpo=132.16℃、Tpf=166.6℃,为确定苯代三聚氰胺酚醛树脂作为固化剂的固化反应条件提供了一定的理论依据。  相似文献   

17.
为了提高nano-SiO2在树脂基体中的分散性,采用一种超支化聚硅氧烷修饰的纳米二氧化硅(HBP-SiO2)改性氰酸酯(CE)树脂。利用非等温差示扫描量热法(DSC)研究了HBP-SiO2/CE电子封装材料的固化动力学,求得其固化工艺参数和固化动力学参数分别为:凝胶温度150.17℃,固化温度197.81℃,后处理温度258.97℃;表观活化能11.22kJ/mol,反应级数0.75,频率因子18342.84s-1。研究表明,HBP-SiO2的加入可以降低CE的活化能,使其固化反应可以在较低温度下进行。  相似文献   

18.
以蓖麻油和三乙烯四胺为原料合成蓖麻油酸多胺固化剂(COAPA),再将其与没食子酸环氧树脂(GAER)混合组成全生物基GAER/COAPA固化体系,采用非等温差示扫描量热法(DSC)对其固化反应过程进行了研究,确定了固化体系最佳质量配比为7:3(GAER:COAPA),获得了最佳固化工艺温度参数;利用Kissinger方...  相似文献   

19.
采用对甲苯磺酰氯作为酚醛树脂的固化促进剂,利用差热扫描量热技术(DSC)研究了对甲苯磺酰氯对酚醛树脂体系固化反应及其动力学的影响,分析了不同百分比含量的对甲苯磺酰氯/酚醛树脂反应体系的固化性能。实验结果表明:随着对甲苯磺酰氯含量的增加,固化反应温度降低,固化时间缩短。并采用Kissinger法和Ozawa法分别计算了固化反应的表观活化能和反应级数,发现采用对甲苯磺酰氯催化时,PF体系的固化反应活化能降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号