首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chaotic optical communication at 2.5 Gb/s is experimentally investigated using three major encoding and decoding schemes, namely chaos shift keying (CSK), chaos masking (CMS), and additive chaos modulation (ACM). The effects of message encoding and decoding on the chaotic dynamics, the chaos synchronization, and the chaotic communication performance are compared among the three schemes. In the schemes of CSK and ACM, it is found that a small amount of message injected into the chaotic dynamics can increase the complexity of the chaotic state dramatically. In the CMS scheme, the chaotic dynamics are found not to be influenced by the encoded message. The synchronization quality deteriorates dramatically with an increase in the message strength in CSK and CMS. The ACM scheme is found to have the best synchronization quality among the three schemes when there is an encoded message. Message recovery is demonstrated for each of the three schemes. The ACM scheme is found to have the best communication performance.  相似文献   

2.
We propose a secure optical communication system based on the principles of generalized and complete chaotic synchronization. A transmitter and a receiver both composed by two chaotic external-cavity semiconductor lasers are coupled in a master-slave configuration to provide generalized synchronization, while the master lasers in the transmitter and in the receiver are completely synchronized through the synchronization channel via an optical fiber. A message is added to the transmitter slave laser and sent to the receiver through the information channel to be compared with the output of the receiver slave laser. The system is robust to a small mismatch of the laser parameters or of the coupling between the master and slave lasers, unavoidable in a real system, and can even enable a good communication up to a 5 Gb/s transmission rate using the chaos masking encryption method, when the master laseres are coupled bidirectionally.   相似文献   

3.
光纤混沌双向保密通信系统研究   总被引:7,自引:0,他引:7       下载免费PDF全文
颜森林 《电子学报》2005,33(2):266-270
本文提出光纤混沌双向保密通信设想,通过耦合光注入半导体激光器激光混沌全光耦合反馈同步系统和光纤传输信道,建立了光纤混沌双向通信系统模型,数值实现了该系统在长距离光纤传输中的同步,详细地分析了系统同步时间随光纤传输长度的关系.证明了光纤的交叉相位调制是限制激光混沌在光纤传输中同步的主要原因,导出了系统传输的非线性相移.数值模拟了具有正弦调制信号的调制频率0.5GHz混沌模拟通信和数字信号调制速率0.4Gbit/s以及20Gbit/s的混沌数字通信以及调制速率0.05Gbit/s 混沌键控通信的应用,计算出光纤混沌数字通信速率和同步误差等关系,还特别分析了系统解码特性和调制带宽,表明系统具有非常好的保密性能和具有高速率通信的能力.光纤混沌双向保密通信是可以实现的.  相似文献   

4.
A comparative study of three data-encoding techniques in optical chaotic communication systems is reported. The chaotic carrier is generated by a semiconductor laser subjected to optical feedback and the data are encoded on it by chaotic modulation (CM), chaotic masking (CMS), or chaotic shift keying (CSK) methods. In all cases, the receiver-which is directly connected to the transmitter-consists of a semiconductor laser similar to that of the transmitter subjected to the same optical feedback. The performance of this back to back configuration is numerically tested by calculating the Q-factor of the eye diagram of the received data for different bit rates from 1 to 20 Gb/s. The CM scheme appears to have the best performance relative to the CMS and CSK scheme, before and after filtering the residual high-frequency oscillations remaining due to nonperfect synchronization between the transmitter and receiver. Moreover, in all encoding methods, a decrease in the Q-factor is observed when the repetition bit-rate of the encoding message increases. In order to achieve as high Q-factor values as possible, a well-synchronized chaotic master-slave system is required.  相似文献   

5.
Numerical studies for anticipating chaos synchronization in semiconductor lasers with optical feedback are presented. Anticipating chaos synchronization in a delay-differential system is believed to occur when all chaos parameters between the two systems are perfectly coincident with each other. However, we find new schemes of anticipating chaos synchronization when the parameters between the two systems have mismatches. Under these conditions, the time lag between the two laser outputs is equal to that of anticipating chaos synchronization, but the physical origin of the phenomenon comes from optical injection-locking or amplification in laser systems. We show the evidence of such chaotic synchronization using trajectories in the phase space of the phase difference and the carrier density in the laser oscillations.  相似文献   

6.
Semiconductor lasers provide an excellent opportunity for communication using chaotic waveforms. We discuss the characteristics and the synchronization of two semiconductor lasers with optoelectronic feedback. The systems exhibit broadband chaotic intensity oscillations whose dynamical dimension generally increases with the time delay in the feedback loop. We explore the robustness of this synchronization with parameter mismatch in the lasers, with mismatch in the optoelectronic feedback delay, and with the strength of the coupling between the systems. Synchronization is robust to mismatches between the intrinsic parameters of the lasers, but it is sensitive to mismatches of the time delay in the transmitter and receiver feedback loops. An open-loop receiver configuration is suggested, eliminating feedback delay mismatch issues. Communication strategies for arbitrary amplitude of modulation onto the chaotic signals are discussed, and the bit-error rate for one such scheme is evaluated as a function of noise in the optical channel  相似文献   

7.
半导体激光器混沌双向保密通信系统理论研究   总被引:4,自引:4,他引:4  
颜森林 《中国激光》2005,32(11):503-1509
提出外部光注入半导体激光器激光混沌全光耦合-反馈同步系统,进行激光器系统稳定性动力学分析并计算出最大Lyapunov指数,导出系统的同步误差扰动方程以及系统有混沌隐藏编码时的同步误差公式和解调公式,数值证明并模拟实现了系统的混沌同步,分析同步瞬态响应和噪声影响,该系统具有较强的抗干扰能力。模拟具有正弦调制信号的调制频率0.2GHz混沌模拟通信和数字信号调制速率0.2Gb/s的混沌数字通信以及调制速率0.05Gb/s混沌键控通信的应用,特别分析了系统解码特性和调制带宽,系统无论是在时域还是在频域,都具有非常好的保密性,该系统可以作为混沌双向保密通信使用。研究表明系统准许在一定范围内可以有参数失配,系统的实际应用是有可能的。  相似文献   

8.
Theoretical and experimental investigations of chaos synchronization and its application to chaotic data transmissions in semiconductor lasers with optical feedback are presented. Two schemes of chaos synchronization-complete and generalized synchronization-are discussed in the delay differential systems. The conditions for chaos synchronization in the systems and the robustness for the parameter mismatches are studied. The possibility of secure communications based on the chaos masking technique in semiconductor lasers with optical feedback is also discussed, and message transmission of a 1.5-GHz sinusoidal signal is demonstrated. The method of bandwidth enhancement of chaotic carriers is proposed for broad-band chaos communications.  相似文献   

9.
The effects of optical feedback in multilongitudinal mode semiconductor lasers are studied through computer simulations. Two separate regimes are found based on the length of the external cavity. For long external cavities (external-cavity mode spacing larger than the relaxation-oscillation frequency), the laser follows a quasi-periodic route to chaos as feedback is increased. For short external cavities, the laser can undergo both quasi-periodic and period doubling routes to chaos. When the laser output becomes chaotic, the relative-intensity noise is greatly increased (by more than 20 dB) from its solitary-laser value. Considerable attention is paid to the effects of optical feedback on the longitudinal-mode spectrum. The stabilization of the mode spectrum and the reduction of the feedback-induced noise through current modulation are studied and compared with experimental results. Current modulation eliminates feedback-induced chaos when the modulation frequency and depth are suitably optimized. This technique of chaos control has applications in optical data recording  相似文献   

10.
利用混沌驱动同步法研究了在电流调制下的半导体激光器的混沌同步。首先数值计算了系统最大Lyapunov指数随调制强度的变化情况,确定了激光器处于混沌态的参数区间。然后分别实现了同地激光器系统和异地激光器系统的混沌驱动同步。响应激光器间相关系数的数值计算表明,两种激光器系统均能达到很好的混沌同步。以三个响应激光器为例,将响应系统推广到多个激光器,并且实现了两种激光器系统的混沌同步。  相似文献   

11.
A numerical investigation of the performance of an open-loop optical chaotic communication system for the isochronous synchronization solution has been carried out, under strong optical injection conditions achieved using antireflective coating at the input facet of the receiver laser in combination with an optical erbium-doped fiber amplifier (EDFA). Different message encoding techniques have been considered and tested at multigigabit rates and for different levels of optical injection to the receiver. The effects induced by the amplified spontaneous emission (ASE) noise of the EDFA to the performance of the chaotic communication system have also been studied. The performance of all the examined encryption methods for the 1 Gb/s bit-rate messages was quite satisfactory and was characterized by Q-factor values that exceeded 10, after synchronizing in the strong injection regime. For higher message bit rates, the Q-factor values for all methods decrease considerably due to the residual frequency components of the chaotic carrier that are now more significant in the message spectral region. The effect of the amplifier's ASE noise to the system's performance was deteriorated as long as the EDFA chaotic input was kept in relatively high power levels.  相似文献   

12.
We theoretically studied synchronization of chaotic oscillation in semiconductor lasers with chaotic light injection. Feedback-induced chaotic light generated from a master semiconductor laser was injected into a solitary slave semiconductor laser. The slave laser subsequently exhibited synchronized chaotic output for a wide parameter range with strong injection and frequency detuning within the injection-locking regime. Our numerical simulation revealed that the synchronized slave laser exhibits remarkable phase locking, even for chaotic light injection. Consequently, synchronization in phase fluctuations becomes dominant over intensity fluctuations. We found that there exists a parameter range where the slave can synchronize in phase only, with no intensity synchronization. However, synchronization can be completely destroyed, both in phase and in intensity, when the phase locking becomes unstable due to four-wave mixing or excited resonance oscillation. The phase locking was studied analytically and the correspondence between numerical and analytical results was shown. We also analytically examined chaos synchronization based on a linear stability analysis from the viewpoint of modulation response of injection-locked semiconductor lasers to a chaotic light signal. As a result, we verified that such injection-locking-induced chaos synchronization results from a quasilinear response of the bandwidth-broadened slave laser due to strong optical injection.  相似文献   

13.
首先研究了非相干光反馈同步系统内部参数失配对系统同步性能的影响,并与相干光反馈的完全同步系统以及广义同步系统进行了比较,其次研究了非相干光反馈采用三种不同的信号调制解调方式(CSK,CMS,ACM),对三种不同频率(250 MHz,2.5GHz和12.5GHz)的信号进行了调制解调。通过MATLAB仿真实验可知,非相干光反馈混沌同步系统相对于相干光反馈完全同步系统更易于实现,同时保留了一定的对参数失配的敏感特性,从而确保了该系统比相干光反馈广义同步具有更高的安全性;在信号解调时,CSK只能解调出250MHz信号,CMS能解调出2.5GHz信号,ACM能够解调出高达12.5GHz的信号。  相似文献   

14.
In this feature section, we have six contributions from pioneering groups working on optical chaos synchronization and encryption. The two more widely used techniques to make a semiconductor laser operate in a chaotic regime are optical and electrooptical feedback. Both techniques are well represented in this feature issue. The first four papers deal with optical feedback. The two other papers concentrate on electro-optical feedback.  相似文献   

15.
许黎  黄果 《激光与红外》2016,46(1):11-16
激光混沌保密通信是近年来新兴的一个领域,它通常利用半导体激光器产生混沌,再将传输信号隐藏于混沌信号中,从而达到保密通信的目的。由于每个学者方式取向不同从而衍生出多种产生混沌的方式,本文参考大量文献,综合各种常用方式,将产生混沌的方式进行系统分类。首先分为反馈混沌和注入混沌;其中把反馈型混沌按反馈物质的不同又分为光反馈混沌和光电反馈混沌,而光反馈又有两种类型:反馈相干光和反馈非相干光,最近,更有学者在此基础上提出了双光反馈;然后分别阐述各种混沌类型的系统模型、理论模型及优缺点,将这个新兴领域的理论系统化、完整化。  相似文献   

16.
Private Message Transmission by Common Driving of Two Chaotic Lasers   总被引:1,自引:0,他引:1  
In this paper, we numerically demonstrate private data transmission using twin semiconductor lasers in which chaotic dynamics and synchronization are achieved by optical injection into the laser pair of a common, chaotic driving-signal, generated by a third laser subject to delayed optical feedback. This laser is selected with different parameters with respect to the twin pair, so that the emissions of the synchronized, matched lasers are highly correlated, whereas their correlation with the driver is low. The digital message modulates the emission of the transmitter, as in a standard CM scheme. Message recovery is then obtained by subtracting, from the transmitted chaos-masked message, the chaos, locally generated by the synchronized receiver laser. Simulations have been performed with the Lang–Kobayashi model, keeping into account both laser and photodetector noise. Private transmission has been demonstrated by investigating the effect of the parameter mismatch, between transmitter and receiver, on synchronization and message recovery.   相似文献   

17.
Chaotic synchronization of injected multiple-quantum-well lasers of optical fiber system and a theoretical model of optical fiber chaotic secure communication system are presented by coupling a chaotic multiple-quantum-well laser synchroniza- tion system and a fiber channel. A new chaotic encoding method of chaos phase shift keying On/Off is proposed for optical fiber secure communications. Chaotic synchronization is achieved numerically in long-haul fiber system at wavelength 1.55 μm. The effect of the nonlinear-phase of fiber is analyzed on chaotic signal and synchronization. A sinusoidal signal of 0.2 GHz frequency is simulated numerically with chaos masking in long-haul fiber analog communication at wavelength 1.55 μm while a digital signal of 0.5 Gbit/s bit rate is simulated numerically with c1haos masking and a rate of 0.05 Gbit/s are also simulated numerically with chaos shift keying and chaos phase shift keying On/Off in long-haul fiber digital communica- tions at wavelength 1.55 μm  相似文献   

18.
We numerically investigate the detailed characteristics of chaos synchronization in semiconductor lasers subject to polarization-rotated optical feedback. The emission of the dominant TE mode of a drive laser is rotated 90 deg and fed back to the laser with time delay. The polarization-rotated TE mode is also injected with time delay into the TM mode of a second laser. Two types of synchronization with different time-lags are found, as in the case for synchronization in semiconductor lasers with nonrotated optical feedback. However, a significant difference to the nonrotated optical feedback case is that neither of the two types of synchronization requires matching of optical carrier frequency between the two lasers.  相似文献   

19.
刘慧杰 《通信技术》2009,42(10):19-22
利用具有外腔反馈的F-P半导体激光器构成开环结构的混沌通信系统。对该系统中存在的同步类型及性能进行分析。结果证实开环系统中在弱注入时达到完全同步,在强注入时达到等时同步,强注入时使用系统增益校正后的同步误差能够更准确反映同步效果。使用混沌调制方法实现混沌载波对信息的加密,研究调制性能。结果表明校正的相减解调法以及大注入系数条件可以恢复出更好的信息。  相似文献   

20.
We characterize the chaotic dynamics of semiconductor lasers subject to either optical or electrooptical feedback modeled by Lang-Kobayashi and Ikeda equations, respectively. This characterization is relevant for secure optical communications based on chaos encryption. In particular, for each system we compute as a function of tunable parameters the Lyapunov spectrum, Kaplan-Yorke dimension and Kolmogorov-Sinai entropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号