首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Inhibition of Na+/H+ exchange (NHE) subtypes has been investigated in a study of the mouse fibroblast L cell line (LAP1) transfected with human (h) NHE1, rabbit (rb) NHE2, rat (rt) or human (h) NHE3 as well as an opossum kidney cell line (OK) and porcine renal brush-border membrane vesicles (BBMV). S3226 ?3-[2-(3-guanidino-2-methyl-3-oxo-propenyl)-5-methyl-phenyl]-N-isopro pylidene-2-methyl-acrylamide dihydro-chloride? was the most potent and specific NHE3 inhibitor with an IC50 value of 0.02 micromol/l for the human isoform, whereas its IC50 value for hNHE1 and rbNHE2 was 3.6 and approximately = 80 micromol/l, respectively. In contrast, amiloride is a weak NHE3 inhibitor (IC50>100 micromol/l) with a higher affinity to hNHE1 and rbNHE2. Cariporide (4-isopropyl-3-methylsulphonyl-benzoyl-guanidine methane-sulphonate), which has an IC50 for NHE3 of approximately 1 mmol/l, is a highly selective NHE1 inhibitor (0.08 micromol/l). Therefore, S3226 is a novel tool with which to investigate the physiological and pathophysiological roles of NHE3 in animal models.  相似文献   

2.
We previously characterized a Na+/H+ exchange activity in rat pancreatic zymogen granules [Anderie, I., and Thévenod, F. (1996) J. Membrane Biol, 152, 195-205]. Here we have identified the Na+/H+ exchanger (NHE) isoforms present in zymogen granules by functional studies with NHE inhibitors. The NHE1 specific blocker HOE 694 [3-(methylsulfonyl-4-piperidino-benzoyl)-guanidine methanesulfonate] inhibited zymogen granule Na+/H+ exchange in a concentration dependent manner, maximally to 53 +/- 5% of controls at 100nM. The remaining Na+/H+ exchange activity was inhibitable by EIPA [5-(N-ethyl-N-isopropyl)amiloride] (EC50 approximately 25 microM) or benzamil (EC50 approximately 100 microM). Amiloride inhibited weakly suggesting that "amiloride-resistant" and "amiloride-sensitive" NHE are expressed in zymogen granules. cDNA sequences encoding NHE1- and NHE4-specific transmembrane domains were detected by RT-PCR in rat pancreatic tissue and in the rat pancreatic acinar cell line AR4-2J. The presence of NHE1 and NHE4 in zymogen granule membranes was confirmed by immunoblots of zymogen granule membranes and by pre-embedding immunogold labeling of purified rat pancreatic zymogen granules with polyclonal NHE1 and NHE4 antibodies. Therefore, we propose that NHE1 and NHE4 are expressed in zymogen granule membranes of rat exocrine pancreas.  相似文献   

3.
This study investigated the effect of chronic hypertonicity on the OKP cell Na/H antiporter, encoded by Na/H exchanger 3 (NHE3). Chronic (48 h) increases in extracellular glucose, mannitol, or raffinose concentration caused a significant increase in Na/H antiporter activity, while increases in urea concentration were without effect. This effect was seen with changes in osmolality of only 20 mOsm/liter, a magnitude that is observed clinically in poorly controlled diabetes mellitus. Increases in mannitol concentration acutely inhibited and chronically stimulated Na/H antiporter activity. The increase in Na/H antiporter activity induced by hypertonic incubation was resistant to 10(-7) and 5 x 10(-6) M but inhibited by 10(-4) M ethylisopropyl amiloride, consistent with regulation of NHE3. In addition, hypertonicity increased total cellular and plasma membrane NHE3 protein abundance twofold, with only a small increase in NHE3 mRNA abundance. We conclude that chronic pathophysiologically relevant increases in tonicity lead to increases in NHE3 protein abundance and activity. This may be responsible for increased proximal tubule apical membrane Na/H antiporter activity in poorly controlled diabetes mellitus, which could then contribute to hypertension, glomerular hyperfiltration and diabetic nephropathy.  相似文献   

4.
5.
The aims of the present study were to estimate the fraction of renal brush border membrane Na+-H+ exchange activity mediated by the isoform NHE3 and to evaluate whether the increased brush border Na+-H+ exchange observed in metabolic acidosis is due to increased expression of NHE3 protein. Compared with other isoforms, NHE3 is known to have a unique profile of sensitivity to pharmacologic inhibitors, including relative resistance to amiloride analogs and HOE694. We therefore assessed the inhibitor sensitivity of pH gradient-stimulated 22Na uptake in renal brush border vesicles isolated from normal rats. The I50 values for amiloride (30 microM), dimethylamiloride (10 microM), ethylisopropylamiloride (6 microM), and HOE694 (>100 microM) were markedly dissimilar from those reported for NHE1 and NHE2 but were nearly identical to reported values for NHE3. Na+-H+ exchange activity in renal brush border vesicles isolated from rats with 5 days of NH4Cl-induced metabolic acidosis was increased 1.5-fold compared with control rats, with no change in inhibitor sensitivity. Western blot analysis indicated that NHE3 protein expression was greater in brush border membranes from acidotic compared with control rats. We conclude that virtually all measured Na+-H+ exchange activity in brush border membranes from control and acidotic rats is mediated by NHE3 and that metabolic acidosis causes increased expression of renal brush border NHE3 protein.  相似文献   

6.
A fibroblast mutant cell line devoid of Na+/H+ exchange was used to stably express cDNAs encoding the NHE1, NHE2, and NHE3 Na+/H+ antiporters. Pharmacological studies using amiloride and two of its 5-N-substituted derivatives, 5-N-dimethyl amiloride and 5-N-(methyl-propyl)amiloride (MPA), demonstrate that the NHE1 isoform is the ubiquitously expressed amiloride-sensitive Na+/H+ antiporter (Ki of 0.08 microM for MPA), whereas the NHE2 and NHE3 isoforms exhibit a lower affinity for these inhibitors (Ki of 0.5 microM and 10 microM, respectively, for MPA) and are therefore likely to be members of the epithelial Na+/H+ exchanger's family. In addition, we have used this system to test a new Na+/H+ exchanger inhibitor possessing anti-ischemic properties on myocardial cells [(3-methylsulphonyl-4-piperidinobenzoyl) guanidine methanesulphonate]. This compound inhibits competitively NHE1 (Ki of 0.16 microM) with a much greater affinity than NHE2 and NHE3 (Ki of 5 microM and 650 microM, respectively) and therefore appears to be much more discriminative between these two classes of antiporter isoforms than the amiloride-related molecules. These results suggest an explanation for the observed difference of physiological effects between amiloride and HOE694, and identify this new inhibitor as a useful tool for studies of Na+/H+ exchange.  相似文献   

7.
Epithelial cell volume increases that occur because of the uptake of Na+-cotransported solutes or hypotonic dilution are followed by a regulatory volume decrease (RVD) due to the activation of K+ and Cl- channels. We studied the relationship of Na+/H+ exchange (NHE) to this RVD in suspended guinea pig jejunal villus cells, using electronic sizing to measure cell volume changes and fluorescent spectroscopy of cells loaded with 2', 7'-bis(carboxyethyl)-5()-carboxyfluorescein to monitor intracellular pH (pHi). When the volume increase achieved by these cells during Na+ solute absorption was duplicated by a modest 5-7% hypotonic dilution, their pHi first acidified and then alkalinized. This alkalinization was blocked by 5-(N-methyl-N-isobutyl) amiloride (MIA; 1 microM), an inhibitor of NHE. The RVD subsequent to 5-7% hypotonic dilution was prevented by Na+-free medium and by amiloride and non-amiloride derivatives. The order of potency of these inhibitors was as follows: MIA > 5-(N,N-dimethyl) amiloride > cimetidine > clonidine, in keeping with the pattern attributable to NHE-1 as the isoform of NHE responsible for increase in pHi after modest volume increases. A substantial 30% hypotonic dilution caused acidification, and RVD following this larger volume increase was not affected by MIA. To assess the effect of hypotonicity on the activity of NHE, we measured the rate of MIA-sensitive pHi recovery from an acid load (dpHi/dt) in 5 and 30% hypotonic media. pHi recovery was faster in 5% hypotonic medium compared with isotonic medium and slowest in 30% hypotonic medium, which suggested that the activity of NHE was stimulated in the slightly hypotonic medium, but inhibited in the 30% hypotonic medium. To determine the role of activated NHE in RVD after a modest volume increase, cells were hypotonically diluted 7% in MIA to prevent RVD and then alkalinized by NH4Cl or acidified by propionic acid addition. Only after alkalinization was there complete volume regulation. We conclude that in Na+-absorbing enterocytes, the NHE-1 isoform of Na+/H+ exchange is stimulated by volume increases that duplicate the "physiological" volume increase occurring when these cells absorb Na+-cotransported solutes. The subsequent alkalinization of pHi is a required determinant of the osmolyte loss that underlies this distinct volume regulatory mechanism.  相似文献   

8.
9.
1. Na+,K(+)-ATPase is the membrane enzyme catalysing the active transport of Na+ and K+ across the plasma membrane of animal cells. A reduced activity of Na+,K(+)-ATPase has been described in gestational hypertension in a variety of cell types, in agreement with the hypothesis that gestational hypertension can induce membrane transport modifications similar to those reported for essential hypertension. The causes of the reduced Na+,K(+)-ATPase activity are still debated. 2. The aim of the present work was to investigate the molecular mechanism of the reduced enzymic activity in gestational hypertension using as a model Na+,K(+)-ATPase purified from human placenta. Na+,K(+)-ATPase obtained from term placentas of eight healthy pregnant women and eight age-matched women with gestational hypertension was purified as previously described. 3. We observed in gestational hypertension: (i) a significant increase in the activation energies above transition temperature; (ii) a significant decrease in the fluorescence polarization of 1-(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene (i.e. increased fluidity) and an increase in the mean lifetime (modified hydrophobicity); (iii) a lower Kq, suggesting an enzymic structural modification; and (iv) an increased mean lifetime and rotational relaxation time of pyrene isothiocyanate, indicating a modified ATP binding site.  相似文献   

10.
Parallel arrays of Na+/H+ and Cl-/HCO3- antiporters are believed to catalyze the first step of transepithelial electrolyte secretion in lacrimal glands by coupling Na+ and Cl- influxes across acinar cell basolateral membranes. Tracer uptake methods were used to confirm the presence of Na+/H+ antiport activity in membrane vesicles isolated from rabbit lacrimal gland fragments. Outwardly-directed H+ gradients accelerated 22Na+ uptake, and amiloride inhibited 96% of the H+ gradient-dependent 22Na+ flux. Amiloride-sensitive 22Na+ influx was half-maximal at an extravesicular Na+ concentration of 14 mM. In vitro stimulation of isolated lacrimal acini with 10 microM carbachol for 30 min increased Na+/H+ antiport activity of a subsequently isolated basolateral membrane sample 2.5-fold, but it did not significantly affect Na+/H+ antiport activity measured in intracellular membrane samples. The same treatment increased basolateral membrane Na+,K(+)-ATPase activity 1.4-fold; this increase could be accounted for by decreases in the Na+,K(+)-ATPase activities of intracellular membranes. Thus, it appears that cholinergic stimulation causes recruitment of additional Na+,K(+)-ATPase pump units to the acinar cell basolateral plasma membrane. The mechanistic basis of the increase in basolateral membrane Na+/H+ antiport activity remains unclear.  相似文献   

11.
The effects of 1 microM concentrations of arachidonic acid hydroperoxide (HPETES) products of 5-, 12- and 15-lipoxygenase on Na+, K(+)-ATPase activity were investigated in synaptosomal membrane preparations from rat cerebral cortex. 5-HPETE inhibited Na+, K(+)-ATPase activity by up to 67 %. In contrast, 12-HPETE and 15-HPETE did not inhibit Na+, K(+)-ATPase activity. In addition, neither 5-HETE or LTA4 inhibited Na+, K(+)-ATPase activity. Dose-response studies indicated that 5-HPETE was a potent (IC25 = 10(-8) M) inhibitor of Na+, K(+)-ATPase activity. These findings indicate that 5-HPETE inhibits Na+, K(+)-ATPase activity by a mechanism that is dependent on the hydroperoxide position and independent of further metabolism by 5-lipoxygenase. It is proposed that 5-HPETE production by 5-lipoxygenase and subsequent inhibition of neuronal Na+, K(+)-ATPase activity may be a mechansim for modulating synaptic transmission.  相似文献   

12.
BACKGROUND & AIMS: Cholestasis complicates total parenteral nutrition (TPN) in preterm infants. Ursodeoxycholic acid (UDCA) is used for several cholestatic problems. The hypothesis of this study was that intravenous UDCA prevents TPN-induced cholestasis by (1) maintaining normal basal and stimulated bile flow, (2) altering bile composition, and (3) changing hepatocyte membrane composition and Na+,K(+)-adenosine triphosphatase (ATPase) activity. METHODS: Three groups of piglets were studied: group 1 received sow's milk, groups 2 and 3 received TPN, and group 3 also received 100 mumol.kg-1.day-1 UDCA intravenously. After 3 weeks, basal and stimulated bile flow were measured. Cholesterol, bile acids, phospholipids, and phospholipid fatty acids were analyzed in bile, and fluidity, phospholipid fatty acid composition, and Na+,K(+)-ATPase were analyzed in hepatocyte membranes. RESULTS: Bile acid secretion and basal and stimulated bile flow were similar in control and UDCA-treated animals but reduced to < 50% in the TPN group. Bile acid-dependent and -independent bile flow were lower in the TPN group. UDCA did not normalize abnormalities in TPN-induced bile composition. Sinusoidal but not canalicular membrane fluidity was different in TPN than in control and UDCA-treated animals. UDCA also increased Na+,K(+)-ATPase activity. Bile and membrane phospholipid fatty acids reflected dietary fatty acids. CONCLUSIONS: Intravenous UDCA improves bile flow and reduces bilirubin levels in the serum and liver in piglets with TPN-induced cholestasis.  相似文献   

13.
P2U/2Y-receptors elicit multiple signaling in Madin-Darby canine kidney (MDCK) cells, including a transient increase of [Ca2+]i, activation of phospholipases C (PLC) and A2 (PLA2), protein kinase C (PKC) and mitogen-activated protein kinase (MAPK). This study examines the involvement of these signaling pathways in the inhibition of Na+,K+,Cl- cotransport in MDCK cells by ATP. The level of ATP-induced inhibition of this carrier ( approximately 50% of control values) was insensitive to cholera and pertussis toxins, to the PKC inhibitor calphostin C, to the cyclic nucleotide-dependent protein kinase inhibitors, H-89 and H-8 as well as to the inhibitor of serine-threonine type 1 and 2A phosphoprotein phosphatases okadaic acid. ATP led to a transient increase of [Ca2+]i that was abolished by a chelator of Ca2+i, BAPTA. However, neither BAPTA nor the Ca2+ ionophore A231287, or an inhibitor of endoplasmic reticulum Ca2+-pump, thapsigargin, modified ATP-induced inhibition of Na+,K+, Cl- cotransport. An inhibitor of PLC, U73122, and an inhibitor of MAPK kinase (MEK), PD98059, blocked ATP-induced inositol-1,4, 5-triphosphate production and MAPK phosphorylation, respectively. However, these compounds did not modify the effect of ATP on Na+,K+, Cl- cotransport activity. Inhibitors of PLA2 (AACOCF3), cycloxygenase (indomethacin) and lypoxygenase (NDGA) as well as exogenous arachidonic acid also did not affect ATP-induced inhibition of Na+,K+,Cl- cotransport. Inhibition of the carrier by ATP persisted in the presence of inhibitors of epithelial Na+ channels (amiloride), Cl- channels (NPPB) and Na+/H+ exchanger (EIPA) and was insensitive to cell volume modulation in anisosmotic media and to depletion of cells with monovalent ions, thus ruling out the role of other ion transporters in purinoceptor-induced inhibition of Na+,K+,Cl- cotransport. Our data demonstrate that none of the known purinoceptor-stimulated signaling pathways mediate ATP-induced inhibition of Na+,K+,Cl- cotransport and suggest the presence of a novel P2-receptor-coupled signaling mechanism.  相似文献   

14.
The effect of endothelins (ET-1 and ET-3) on 86Rb+ uptake as a measure of K+ uptake was investigated in cultured rat brain capillary endothelium. ET-1 or ET-3 dose-dependently enhanced K+ uptake (EC50 = 0.60 +/- 0.15 and 21.5 +/- 4.1 nM, respectively), which was inhibited by the selective ETA receptor antagonist BQ 123 (cyclo-D-Trp-D-Asp-Pro-D-Val-Leu). Neither the selective ETB agonists IRL 1620 [N-succinyl-(Glu9,-Ala11,15)-ET-1] and sarafotoxin S6c, nor the ETB receptor antagonist IRL 1038 [(Cys11,Cys15)-ET-1] had any effect on K+ uptake. Ouabain (inhibitor of Na+,K(+)-ATPase) and bumetanide (inhibitor of Na(+)-K(+)-Cl- cotransport) reduced (up to 40% and up to 70%, respectively) the ET-1-stimulated K+ uptake. Complete inhibition was seen with both agents. Phorbol 12-myristate 13-acetate (PMA), activator of protein kinase C (PKC), stimulated Na+,K(+)-ATPase and Na(+)-K(+)-Cl- cotransport. ET-1- but not PMA-stimulated K+ uptake was inhibited by 5-(N-ethyl-N-isopropyl)amiloride (inhibitor of Na+/H+ exchange system), suggesting a linkage of Na+/H+ exchange with ET-1-stimulated Na+,K(+)-ATPase and Na(+)-K(+)-Cl- cotransport activity that is not mediated by PKC.  相似文献   

15.
Na+/H+ exchanger isoform 3 (NHE3), an epithelial brush border isoform of the Na+/H+ exchanger gene family, plays an important role in reabsorption of Na+ in the small intestine, the colon, and the kidney. In several cell types, phorbol 12-myristate 13-acetate (PMA) acutely inhibits NHE3 activity by changes in Vmax, but the mechanism of this inhibition is unknown. We investigated the role of subcellular redistribution of NHE3 in the PMA-induced inhibition of endogenous brush border NHE3 in a model human colon adenocarcinoma cell line, Caco-2. Subcellular localization of NHE3 was examined by confocal morphometric analysis complemented with cell surface biotinylation and compared with NHE3 activity evaluated by fluorometric measurement of intracellular pH. PMA inhibited NHE3 activity by 28% (p < 0.01), which was associated with a decrease of the ratio of the brush border/subapical cytoplasmic compartment of NHE3 from approximately 4.3 to approximately 2.4. This translocation resulted in 10-15% of the total cell NHE3 being shifted from the brush border pool to the cytoplasmic pool. These effects were mediated by protein kinase C, since they were blocked by the protein kinase C inhibitor H7. We conclude that inhibition of NHE3 by protein kinase C in Caco-2 cells involves redistribution of the exchanger from brush border into a subapical cytoplasmic compartment, and that this mechanism contributes approximately 50% to the overall protein kinase C-induced inhibition of the exchanger.  相似文献   

16.
The ubiquitous plasma membrane Na+/H+ exchanger (NHE1) is rapidly activated in response to various extracellular signals. To understand how the intracellular Ca2+ is involved in this activation process, we investigated the effect of Ca2+ ionophore ionomycin on activity of the wild-type or mutant NHE1 expressed in the exchanger-deficient fibroblasts (PS120). In wild-type transfectants, a short (up to 1 min) incubation with ionomycin induced a significant alkaline shift (approximately 0.2 pH unit) in the intracellular pH (pHi) dependence of the rate of 5-(N-ethyl-N-isopropyl) amiloride-sensitive 22Na+ uptake, without changes in the cell volume and phosphorylation state of NHE1. Mutations that prevented calmodulin (CaM) binding to a high affinity binding region (region A, amino acids 636-656) rendered NHE1 constitutively active by inducing a similar alkaline shift in pHi dependence of Na+/H+ exchange. These same mutations abolished the ionomycin-induced NHE1 activation. These data suggest that CaM-binding region A functions as an "autoinhibitory domain" and that Ca2+/CaM activates NHE1 by binding to region A and thus abolishing its inhibitory effect. Furthermore, we found that a short stimulation with thrombin and ionomycin had apparently no additive effects on the alkaline shift in the pHi dependence of Na+/H+ exchange and that deletion of region A also abolished such an alkaline shift induced by a short thrombin stimulation. The results strongly suggest that the early thrombin response and the ionomycin response share the same activation mechanism. Based on these data and the results shown in the accompanying paper (Bertrand, B., Wakabayashi, S., Ikeda, T., Pouysségur, J., and Shigekawa, M. (1994) J. Biol. Chem. 269, 13703-13709), we propose that CaM is one of the major "signal transducers" that mediate distinct extracellular signals to the "pHi sensor" of NHE1.  相似文献   

17.
The uptake of choline by the tegument of Hymenolepis diminuta was investigated. The Q10 at pH 7.0 was 1.7, with an Ea of 90 kJ.mol-1. Choline transport was pH sensitive: At pH 5.0, a Na(+)-independent mechanism predominated, which was inhibited by 100 nM benzamil, 130 mM Na+, and 300 microM verapamil. At pH 7.0, the Na(+)-independent mechanism was inhibited by 130 mM Na+, amiloride, and EIPA with IC50's of 130 microM and 30 microM, respectively, and by benzamil with IC50's of 100 pM (high-potency Benzamil Sensitive Component; HBSC) and 70 microM (low-potency Benzamil Sensitive Component; LBSC). Calcium-free saline enhanced choline uptake non-specifically. Lanthanum3+, Gd3+, gramicidin, nigericin, and high-K+ did not affect choline uptake at pH 5.0 or pH 7.0, and 10 microM verapamil was without effect at pH 5.0, suggesting no significant role for the electrical potential difference across the brush-border membrane, a Na+/H+ antiporter, a Na+/Ca2+ antiporter, or Ca2+ channels in choline uptake. Under physiological conditions, the HBSC accounts for approximately 25% of the total choline taken up at pH 5.0, while the LBSC accounts for approximately 55% of the choline taken up at pH 7.0. The data suggest novel choline transporting mechanisms; an HBSC which displays properties in common with apical Na+ channels, and a unique LBSC of choline transport.  相似文献   

18.
1. Hexachlorocyclohexane (HCH), an organochlorine pesticide having hydrophobic molecule is known to act on membranes. HCH mediated alterations in erythrocyte membrane occur through disorganization of the lipid bilayer. Therefore the changes in erythrocyte membrane fluidity, osmotic fragility and certain membrane bound enzymes were studied. Administration of HCH (technical) to rats at 5 mg/kg, orally, 5 days a week for 1, 2 and 3 months caused marked increase in erythrocyte membrane fluidity, osmotic fragility and decrease in levels of Na+, K(+)-ATPase, acetylcholinesterase in erythrocytes and glutathione in blood. 2. These changes indicate that HCH adversely affects membrane structure and function.  相似文献   

19.
We previously demonstrated that the progesterone-(P) initiated human sperm acrosome reaction (AR) was dependent on the presence of extracellular Na+ (Na(-)0). Moreover, Na(-)0 depletion resulted in a decreased cytosolic pH (pHi), suggesting involvement of a Na(+)-dependent pHi regulatory mechanism during the P-initiated AR. We now report that the decreased pHi resulting from Na(+)0 depletion is reversible and mediated by a Na+/H+ exchange (NHE) mechanism. To determine the role of an NHE in the regulation of pHi, capacitated spermatozoa were incubated in Na(+)-deficient, bicarbonate/CO2-buffered (ONaB) medium for 15-30 min, which resulted in an intracellular acidification as previously reported. These spermatozoa were then transferred to Na(+)-containing, bicarbonate/CO2-buffered (NaB) medium; Na(+)-containing, Hepes-buffered (NaH) medium; or maintained in the ONaB medium. Included in the NaH medium was the NHE inhibitor 5-(N-ethyl-N-isopropyl) amiloride (EIPA). The steady-state pHi was then determined by spectrofluorometric measurement of bis(carboxyethyl)5(6)-carboxyfluoroscein (BCECF) fluorescence. EIPA (0.1 microM) significantly (P < 0.05) inhibited the pHi recovery produced by NaH medium. Moreover, the pHi in NaH medium was not significantly (P < 0.05) different than NaB medium. These results indicate that a Na(+)-dependent, bicarbonate-independent pHi regulatory mechanism, with a pharmacological characteristic consistent with an NHE, is present in capacitated spermatozoa. In support of the involvement of a sperm NHE, we also demonstrated specific immunoreactivity for a 100 kDa porcine sperm protein using an NHE-1 specific monoclonal antibody. Interestingly, no significant (P = 0.79) effect was seen on the P-initiated AR when EIPA was included in either the NaH or NaB medium. While these findings suggest that inhibition of NHE-dependent pHi regulation in capacitated spermatozoa is not sufficient to block initiation of the AR by P, they do not preclude the possibility that an NHE mediates the regulation of capacitation or sperm motility.  相似文献   

20.
Na+/H+ exchangers catalyze the electrically silent countertransport of Na+ and H+, controlling the transmembrane movement of salt, water, and acid-base equivalents, and are therefore critical for Na+ tolerance, cell volume control, and pH regulation. In contrast to numerous well studied plasma membrane isoforms (NHE1-4), much less is known about intracellular Na+/H+ exchangers, and thus far no vertebrate isoform has been shown to have an exclusively endosomal distribution. In this context, we show that the yeast NHE homologue, Nhx1 (Nass, R., Cunningham, K. W., and Rao, R. (1997) J. Biol. Chem. 272, 26145-26152), localizes uniquely to prevacuolar compartments, equivalent to late endosomes of animal cells. In living yeast, we show that these compartments closely abut the vacuolar membrane in a striking bipolar distribution, suggesting that vacuole biogenesis occurs at distinct sites. Nhx1 is the founding member of a newly emergent cluster of exchanger homologues, from yeasts, worms, and humans that may share a common intracellular localization. By compartmentalizing Na+, intracellular exchangers play an important role in halotolerance; furthermore, we hypothesize that salt and water movement into vesicles may regulate vesicle volume and pH and thus contribute to vacuole biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号