首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Optical modifications to a confocal scanning laser microscope are described which allow simultaneous fluorescence imaging of living specimens excited by ultraviolet (UV)- and visible-wavelength light. Modifications to a Bio-Rad MRC 600 Lasersharp confocal microscope include the introduction of UV-path-specific lenses and a specially designed UV transmitting eyepiece and tube lens. Upon UV excitation these modifications provide similar resolution and field flatness when compared with visible confocal microscopy. The UV-path-specific optics could be adjusted to correct for varying amounts of longitudinal chromatic aberration in commercially available objectives. Eyepiece and tube lenses were chromatically corrected for UV through visible wavelengths to minimize lateral chromatic error. With these modifications, UV-wavelength light may be used to excite ratioing dyes to quantify intracellular ion concentrations, or as an energy source to release caged compounds in a spatially restricted volume, while simultaneously imaging with dyes excited by visible-wavelength light.  相似文献   

2.
Spectrofluorometric imaging microscopy is demonstrated in a confocal microscope using a supercontinuum laser as an excitation source and a custom‐built prism spectrometer for detection. This microscope system provides confocal imaging with spectrally resolved fluorescence excitation and detection from 450 to 700 nm. The supercontinuum laser provides a broad spectrum light source and is coupled with an acousto‐optic tunable filter to provide continuously tunable fluorescence excitation with a 1‐nm bandwidth. Eight different excitation wavelengths can be simultaneously selected. The prism spectrometer provides spectrally resolved detection with sensitivity comparable to a standard confocal system. This new microscope system enables optimal access to a multitude of fluorophores and provides fluorescence excitation and emission spectra for each location in a 3D confocal image. The speed of the spectral scans is suitable for spectrofluorometric imaging of live cells. Effects of chromatic aberration are modest and do not significantly limit the spatial resolution of the confocal measurements.  相似文献   

3.
We have built a fibre optic confocal reflectance microscope capable of imaging biological tissue in near real time. The measured lateral resolution is 3 µm and axial resolution is 6 µm. Images of epithelial cells, excised tissue biopsies, and the human lip in vivo have been obtained at 15 frames s?1. Both cell morphology and tissue architecture can be appreciated from images obtained with this microscope. This device has the potential to enable reflected light confocal imaging of internal organs for in situ detection of pathology.  相似文献   

4.
We compare the axial sectioning capability of multifocal confocal and multifocal multiphoton microscopy in theory and in experiment, with particular emphasis on the background arising from the cross‐talk between adjacent imaging channels. We demonstrate that a time‐multiplexed non‐linear excitation microscope exhibits significantly less background and therefore a superior axial resolution as compared to a multifocal single‐photon confocal system. The background becomes irrelevant for thin (< 15 µm) and sparse fluorescent samples, in which case the confocal parallelized system exhibits similar or slightly better sectioning behaviour due to its shorter excitation wavelength. Theoretical and experimental axial responses of practically implemented microscopes are given.  相似文献   

5.
Hillenbrand R 《Ultramicroscopy》2004,100(3-4):421-427
Diffraction limits the spatial resolution in classical microscopy or the dimensions of optical circuits to about half the illumination wavelength. Scanning near-field microscopy can overcome this limitation by exploiting the evanescent near fields existing close to any illuminated object. We use a scattering-type near-field optical microscope (s-SNOM) that uses the illuminated metal tip of an atomic force microscope (AFM) to act as scattering near-field probe. The presented images are direct evidence that the s-SNOM enables optical imaging at a spatial resolution on a 10 nm scale, independent of the wavelength used (λ=633 nm and 10 μm). Operating the microscope at specific mid-infrared frequencies we found a tip-induced phonon-polariton resonance on flat polar crystals such as SiC and Si3N4. Being a spectral fingerprint of any polar material such phonon-enhanced near-field interaction has enormous applicability in nondestructive, material-specific infrared microscopy at nanoscale resolution. The potential of s-SNOM to study eigenfields of surface polaritons in nanostructures opens the door to the development of phonon photonics—a proposed infrared nanotechnology that uses localized or propagating surface phonon polaritons for probing, manipulating and guiding infrared light in nanoscale devices, analogous to plasmon photonics.  相似文献   

6.
Optical far‐field imaging of single molecules in a frozen solution at 1.2 K with a lateral resolution of 3.4 nm is reported. The mechanical stability of the fluorescence microscope, especially of the low‐temperature insert, allows for the localization of fluorescing molecules with a reproducibility of better than 5 nm within observation times up to 10 min. For observation times of 9 h the reproducibility of the lateral position is limited to about 20 nm due to mechanical drift. Lateral position and orientation of 314 single molecules, present within the confocal detection volume of ~10 µm3, are obtained. The possibility to correct for mechanical drift by monitoring the position of a spatial reference in the sample is demonstrated.  相似文献   

7.
We present two-photon excitation 4Pi-confocal images of clustered fluorescence beads demonstrating three-dimensional far-field light microscopy with unprecedented resolution. For an excitation wavelength of 760 nm, the lateral and axial resolution amounts to 200 and 145 nm, respectively. The four-fold improved axial resolution is achieved by engineering the point-spread function through a suitable combination of aperture enlargement, two-photon excitation, confocalization and three-point deconvolution. In contrast to their confocal counterparts, 4Pi-confocal images do not exhibit the typical axial elongation. The axial resolution in the 4Pi-confocal images corresponds to about one-fifth of the wavelength and surpasses the lateral resolution by 25%.  相似文献   

8.
在激光扫描共聚焦显微成像技术基础上引入了光谱成像技术以便区分生物组织中的不同荧光成分。采用分光棱镜对荧光进行光谱展开,在光谱谱面处设置两个可移动缝片形成出射狭缝,两个步进电机带动安装其上的两个缝片设置系统在整个工作波长(400~700 nm)内的光谱带宽,其最小光谱带宽优于5 nm。用488 nm激光和低压汞灯实际测量了几条谱线对应的狭缝位置并和理论值做了比较,结果显示实际狭缝位置和理论值的差值均小于0.1 mm。在全光谱和50 μm出射狭缝(对应2.5 nm光谱带宽)对老鼠肾脏组织进行了共聚焦光谱成像实验,获得了老鼠肾脏组织中DAPI标定的细胞核图像和Alexa Fluor®488标定的肾脏小球曲管图像,实现了对老鼠肾脏组织不同成分的区分。实验结果表明:提出的系统能够进行共聚焦光谱成像,扩大了共聚焦显微镜的适用范围。  相似文献   

9.
A laser scanning far-field optical microscope for low-temperature imaging and spectroscopy based on gradient index optics is presented. A rod-shaped gradient index microlens is used as a zero-working-distance solid immersion objective lens. The obtained lateral resolution is 310 nm of the FWHM at a wavelength of 545 nm. A laser scanning mechanism located outside an optical cryostat enables one to achieve large scanning ranges independent of temperature. The use of the microscope for submicrometre-scale spectroscopy and low-temperature photochemistry performed on molecular J aggregates in thin polymer films is presented.  相似文献   

10.
We have developed a novel light source for use in a scanning near‐field optical microscope (SNOM or NSOM) based on a nanopipette whose distance from the sample surface is controlled using scanning ion conductance microscopy. The light source is based on the general principle of the chemical reaction between a fluorophore in the pipette and ligand in the bath, to produce a highly fluorescent complex that is continually renewed at the pipette tip. In these experiments we used fluo‐3 and calcium, respectively. This complex is then excited with an Ar+ laser, focused on the pipette tip, to produce the light source. This method overcomes the transmission problem of more traditional SNOM probes and has been used to acquire simultaneous high‐resolution topographic and optical images of biological samples in physiological buffer. A resolution of ~220 nm topographic and ~190 nm optical was determined through imaging fixed sea‐urchin sperm flagella. Live A6 cells were also imaged, demonstrating the potential of this system for SNOM imaging of living cells.  相似文献   

11.
Based on the principle of laser-feedback interferometry (LFI), a laser-feedback microscope (LFM) has been constructed capable of providing an axial (z) resolution of a target surface topography of ~ 1 nm and a lateral (x, y) resolution of ~ 200 nm when used with a high-numerical-aperture oil-immersion microscope objective. LFI is a form of interferometry in which a laser's intensity is modulated by light re-entering the illuminating laser. Interfering with the light circulating in the laser resonant cavity, this back-reflected light gives information about an object's position and reflectivity. Using a 1-mW He–Ne (λ = 632·8 nm) laser, this microscope (PHOEBE) is capable of obtaining 256 × 256-pixel images over fields from (10 μm × 10 μm) to (120 μm × 120 μm) in ~ 30 s. An electromechanical feedback circuit holds the optical pathlength between the laser output mirror and a point on the scanned object constant; this allows two types of images (surface topography and surface reflectivity) to be obtained simultaneously. For biological cells, imaging can be accomplished using back-reflected light originating from small refractive-index changes (> 0·02) at cell membrane/water interfaces; alternatively, the optical pathlength through the cell interior can be measured point-by-point by growing or placing a cell suspension on a higher-reflecting substrate (glass or a silicon wafer). Advantages of the laser-feedback microscope in comparison to other confocal optical microscopes include: the simplicity of the single-axis interferometric design; the confocal property of the laser-feedback microscope (a virtual pinhole), which is achieved by the requirement that only light that re-enters the laser meeting the stringent frequency, spatial (TEM00), and coherence requirements of the laser cavity resonator mode modulate the laser intensity; and the improved axial resolution, which is based on interferometric measurement of optical amplitude and phase rather than by use of a pinhole as in other types of confocal microscopes.  相似文献   

12.
A tandem scanning confocal microscope (TSCM) is currently being used to obtain high-resolution images of the human cornea in vivo. Advantages of confocal microscopy for in vivo imaging include optical sectioning and increased contrast through removal of scattered light. We have adapted the TSCM to view the retina in vivo by constructing an applanating lens and fitting the microscope with an imaging-intensifying camera of increased sensitivity. The microscope uses a spinning disc with 40,000 holes, each of 30 microns diameter, and a 100 W mercury arc lamp light source with a 455 nm long pass filter. The applanating lens is composed of three elements, two of which are movable for focusing. Images of a rabbit retina were obtained in vivo revealing the nerve fiber layer and blood vessels around the optic disc. The power density at the retina was calculated to be 3 mW/cm2, which is well below the power levels of a direct or indirect ophthalmoscope. Magnification of the retinal image was approximately 60x and a 1 mm wide area of retina was in view. This prototype TSCM system demonstrates that images of a retina in vivo are obtainable with confocal microscopy and that the sharpness is comparable to standard fundus camera photography. Further modifications to improve the light level and alterations in the design of the objective should improve the quality of the images obtained and achieve the enhanced resolution of which, in theory, the confocal microscope is capable.  相似文献   

13.
We present a confocal microscopy setup that is able to record magneto-optical hysteresis cycles separating the in-plane and out-of-plane magnetization components. This apparatus is based on a modified commercial microscope, where the light beam has been deviated from the cylindrical symmetry axis of the objective lenses by inserting a translating plate in the optical path. The instrument allows for the magneto-optical imaging with a lateral resolution of 600 nm at λ = 635 nm light wavelength.  相似文献   

14.
Using cross-hatched, patterned semiconductor surfaces and round 20-nm-thick gold pads on semiconductor wafers, we investigate the imaging characteristics of a reflection near-field optical microscope with an uncoated fibre tip for different polarization configurations and light wavelengths. It is shown that cross-polarized detection allows one to effectively suppress far-field components in the detected signal and to realize imaging of optical contrast on the sub-wavelength scale. The sensitivity window of our microscope, i.e. the scale on which near-field optical images represent mainly optical contrast, is found to be ≈100 nm for light wavelengths in the visible region. We demonstrate imaging of near-field components of a dipole field and purely dielectric contrast (related to well-width fluctuations in a semiconductor quantum well) with a spatial resolution of ≈100 nm. The results obtained show that such a near-field technique can be used for polarization-sensitive imaging with reasonably high spatial resolution and suggest a number of applications for this technique.  相似文献   

15.
Direct measurement of absorption spectra for minute areas (2 μm ×2 μm) in a dried mammalian cell was attempted using X-ray contact images of a whole cell. The wavelength region used ranged from 1.5 to 10 nm covering the absorption edges of the major cellular elements. The measurements were achieved taking advantage of synchrotron radiation as a tuneable light source and an electronic zooming tube as an X-ray detector with a high spatial resolution. The spectra in every intracellular area exhibited marked absorption changes at the absorption edges of carbon, nitrogen and oxygen, while minor but significant changes for iron and calcium were observed, particularly in the cytoplasmic areas. These results reveal the different spatial distributions of the constituent elements in a cell.  相似文献   

16.
Using a local anodic‐oxidation method with a probe tip of a scanning near‐field optical microscope (SNOM) as the electrode, we have fabricated an oxide core with subwavelength dimensions on metal. The propagation of the surface plasmon polariton (SPP), which is excited at the interface between the oxide core and the metal clad, has been investigated using the same SNOM. Altering the wavelength of input light from 532 nm to 830 nm, the propagation length of the SPP extends from 2 µm to 6 µm. We carried out a simulation of the SPP propagation, and obtained a similar wavelength dependence.  相似文献   

17.
Two-photon fluorescence surface wave microscopy   总被引:1,自引:0,他引:1  
This paper demonstrates the principle of two-photon surface wave microscopy with a view to applications on biological samples. We describe a modified scanning optical microscope, which uses specially prepared coverslips. These coverslips are designed to support the propagation of surface waves capable of large field enhancements. We also discuss the beam conditioning necessary to ensure efficient use of the available illumination. Two-photon surface wave fluorescent excitation is demonstrated on fluorescent nanospheres, demonstrating a point spread function width of ≈220 nm at an illumination wavelength of 925 nm. The potential of non-linear surface wave excitation for both fluorescence and harmonic imaging microscopy is discussed.  相似文献   

18.
Soft-X-ray damage to biological samples   总被引:2,自引:0,他引:2  
X-ray damage to biological samples was investigated in the wavelength region of 2.7–5 nm, which overlaps the so-called 'water window', the wavelength range of 2.4–4.3 nm usually used in X-ray microscopy. Yeast cells and myofibrils were chosen as representatives of whole cell samples and motile protein systems, respectively. The samples were exposed to X-rays using an apparatus composed mainly of a laser-plasma X-ray source, a Wolter mirror condenser, and a sample cell. The yeast cells lost their dye exclusion ability when the X-ray flux was higher than 1 × 106 photons μm−2, while the myofibrils lost contractility when the X-ray flux was higher than 4 × 105 photons μm−2. These X-ray fluxes are lower than the flux required for the X-ray microscope observation of biological samples at a resolution higher than that of light microscopes.  相似文献   

19.
By monitoring coenzyme autofluorescence modifications. as an indicator of cell damage. the cellular response to femtosecond near-infrared (NIR) radiation (two-photon absorption) was compared with exposure to low-power UV A radiation (one-photon absorption). Excitation radiation from a tunable Ti-sapphire laser. focused through highnumerical- aperture microscope optics. provided diffractionlimited mlcrobeams of an adjustable peak power. Laser scanning NIR microscopy was used to detect spatially the intracellular distribution of fluorescent coenzymes by fluorescence intensity imaging as well as fluorescence lifetime imaging (T-mapping). Upon the onset of UV or NIR exposure. Chinese hamster ovary cells exhibited blue/green autofluorescence witq a mean lifetime of 2·2 ns. which was attributed to NAD(P)H in mitochondria. Exposure to 365 nm radiation from a high-pressure mercury lamp (1 m W. 300 J cm-2 ) resulted in oxidative stress correlated with increased autofluorescence intensity. onset of nuclear fluorescence. and a fluorescence lifetime decrease. The cellular response to femtosecond NIR micro beams depended significantly on peak power. Peak powers above a threshold value of about 0·5kW (average power: 6mW). 0·55kW (7mW) and 0·8kW (lOmW) at 730nm. 760nm and 800nm. respectively. resulted in the onset of short-lived luminescence with higher intensity (100x) than the intracellular NAD(P)H fluorescence. This luminescence. accompanied by destruction of cellular morphology. was localized and occurred in the mitochondrial region. In contrast. beams at a power of less than 0·5 kW allowed nondestructive fluorophore detection with high spatial and temporal resolution without modification of cellular redox state or cell morphology.  相似文献   

20.
The near-field probes described in this paper are based on metallized non-contact atomic force microscope cantilevers made of silicon. For application in high-resolution near-field optical/infrared microscopy, we use aperture probes with the aperture being fabricated by focused ion beams. This technique allows us to create apertures of sub-wavelength dimensions with different geometries. In this paper we present the use of slit-shaped apertures which show a polarization-dependent transmission efficiency and a lateral resolution of < 100 nm at a wavelength of 1064 nm. As a test sample to characterize the near-field probes we investigated gold/palladium structures, deposited on an ultrathin chromium sublayer on a silicon wafer, in constant-height mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号