首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to compare the performance efficiency of melt-blown and currently used glass fiber filter media under the same environmental conditions. To evaluate filter efficiency, filter class was determined according to ISO and European standards (EN 1822-1:2009) using an automated filter tester (0.3 μm size), taking into account particle filtration, fractional efficiency for negative pressure devices, and consumption of electrical power. The average fractional efficiency, quality factor (QF), fractional efficiency by dust loading amount, pressure by dust loading amount, and QF by dust loading amount were higher in the case of melt-blown media than in the case of glass fiber filters. The fractional efficiency of hydrocharged melt-blown filters was higher than that of uncharged media. Based on performance efficiency, melt-blown filters are more effective high efficiency particulate air filters than glass fiber media.

Copyright © 2018 American Association for Aerosol Research  相似文献   


2.
Soot particle removal performance of two types of metallic filter media, sintered metal powder and sintered metal fiber, is experimentally evaluated as potential improvements to conventional ceramic filtration media for gasoline direct injection (GDI) engine PM after-treatment application. Soot collection efficiency and flow resistance of several grades of metallic media are measured at temperatures of 25, 350, and 650°C and a range of representative filtration velocities for sub-micrometer soot particles generated from a propane flame. Theoretical collection efficiency based on single fiber efficiency theory shows good agreement with experimental data for nearly spherical KCl particles at 350°C. Improved collection efficiency is observed for soot particles in the interception-dominated size range above ~100 nm due to enhanced interception length. Soot collection is slightly enhanced at higher temperature, which is consistent with model predictions. Sintered metal fiber media are found capable of removing ~75% of soot particles by mass with an incremental flow resistance of less than 1.5 kPa under 10 cm/s and 350°C, which is promising for gasoline particulate filter (GPF) application. The media level figure of merit (FOM) is used to quantify the soot collection efficiency versus flow resistance tradeoff of all media tested. It is found that due to their more open structure (higher porosity) sintered metal fiber media have FOMs nearly one order of magnitude higher than those of sintered metal powder media, and by analogy those of conventional wall flow ceramic media. This suggests that sintered metal fiber media represents an attractive alternative to ceramic media for designing GPFs; however, further research into creating comparable surface area to the honeycomb structures used for wall flow filters is needed to extract the full potential of metal fiber media.

Copyright © 2017 American Association for Aerosol Research  相似文献   


3.
We introduced monodisperse calibrant particles into an eight-stage non-viable Andersen cascade impactor (ACI) operated at 28.3 L/min and separately quantified the particle mass captured under each of the four concentric rings of nozzles on stages 0 and 1, the entry and succeeding stages of this impactor. On both stages, we found that each ring of nozzles has a particle capture efficiency behavior that differs from the others, and the fraction of calibrant particles deposited under each of the individual rings of nozzles depended on the particle size. We believe this behavior derives primarily from a radial flow velocity non-uniformity associated with recirculation zones introduced by the 110° expansion angle of the inlet cone. Because of these recirculation zones, the inertia of particles larger than about 5 µm aerodynamic diameter will cause their point-wise local concentration to differ from the concentration at the inlet entry. This concentration maldistribution continues to stage 1 primarily because of the annular collection plate at stage 0. The influence of the inlet cone aerodynamics on the performance of both stages means that the size of particles deposited on these plates will be uncertain unless the aerosol transport entering the impactor associated with calibration using monodisperse particles exactly simulates the in-use aerosol flow conditions. The degree of realism necessary in the calibration method has heretofore not been discussed in published calibrations of the ACI, introducing uncertainty in the size interpretation of the particle mass collected on stages 0 and 1 in practical applications of this impactor.

Copyright © 2017 American Association for Aerosol Research  相似文献   


4.
The performance of electrostatically charged blown microfiber filter media was characterized for high-volume sampling applications. Pressure drop and aerosol collection efficiency were measured at air pressures of 55.2 and 88.7 kilopascals (kPa) and filter face velocities ranging from 2.5 to 11.25 meters per second (m/s). Particle penetration was significant for particles above 0.5 micrometers (μm) in aerodynamic diameter where the onset of particle rebound was observed as low as 200 nanometers (nm). Particle retention was enhanced by treating filters in an aqueous solution of glycerol. Adding this retention agent eliminated electrostatic capture mechanisms but mitigated inertial rebound. Untreated filters had higher nanoparticle collection efficiencies at lower filter face velocities where electrostatic capture was still significant. At higher filter face velocities, nanoparticle collection efficiencies were higher for treated filters where inertial capture was dominant and particle rebound was mitigated. Significant improvements to microparticle collection efficiency were observed for treated filters at all air flow conditions. At high air pressure, filter efficiency was greater than 95% for particles less than 5 μm. At low air pressure, performance enhancements were not as significant since air velocities were significantly higher through the fiber mat. Measured single fiber efficiencies were normalized by the theoretical single fiber efficiency to calculate adhesion probability. The small fiber diameter (1.77 μm) of this particular filter gave large Stokes numbers and interception parameters forcing the single fiber efficiency to its maximum theoretical value. The adhesion probability was plotted as a function of the ratio of Stokes and interception parameter similar to the works of others. Single fiber efficiencies for inertial nanoparticle collection were compared to existing theories and correlations.

Copyright 2014 American Association for Aerosol Research  相似文献   


5.
Results of a numerical study of the RespiCon sampler performance in the calm air are presented. The air flow is described by the Navier–Stokes equations of axisymmetric stationary viscous flow of incompressible fluid that are numerically integrated by the computational fluid dynamics (CFD) software FLUENT. The collection efficiencies of RespiCon impactor stages agree quite well with experimental data and curves of the European standards for the thoracic and respirable dust fractions. The aspiration efficiencies derived from the numerical model overestimate the experimental data in the range of particle sizes of 10 μm < dp < 40 μm; however, they correctly predict the value of maximal size of aspirated particles. A new design of the RespiCon sampler with a higher volume flow rate was developed.

Copyright 2014 American Association for Aerosol Research  相似文献   


6.
An external electric field was applied on the filter to improve its collection efficiency, and the collection efficiencies of the different filters under various conditions were evaluated. Dominant electrical filtration mechanisms for each condition were investigated using experimental and theoretical approaches. Four types of air filters were used as test filters: a charged fiber filter, a low-grade filter with 50% collection efficiency in the most penetration particle size (MPPS) zone, and two high-grade filters with more than 95% collection efficiency in the MPPS zone. Three different particle charge states—neutralized, single-charged and uncharged—were considered. For neutralized particles, the external electric field led to a 14.5%p. and 2.5%p. increase in the collection efficiencies of the low-grade filter and charged fiber filter, respectively. With the electric field, the collection efficiency of the low-grade filter increased by 30%p. for single-charged particles. The electric field also affected the collection efficiencies of the charged filter and high-grade filters, but the effect was not significant. For uncharged particles, the electric field did not lead to a remarkable increase in the collection efficiencies of any of the filters. Through experimental and theoretical analysis, it was found that the polarization force imposed on the charged fiber was the dominant factor for the charged fiber filter regardless of application of the external electric field. The Coulombic force imposed on the electric field was the dominant factor for the low-grade filter, while both the Coulombic and the polarization forces affected the collection efficiency of the high-grade filter.

Copyright © 2017 American Association for Aerosol Research  相似文献   


7.
The Institute of Radioprotection and Nuclear Safety (IRSN in French) is conducting research on the impact of a fire on the behaviour of containment devices such as high efficiency particulate air (HEPA) pleated filters for radioactive materials. This work aims to study the clogging of HEPA filters in case of fire involving realistic materials (polymers making up gloves boxes, waste treatment solvent, hydraulic oil, solid material mixtures making up a trash bin, electrical cables, and cabinets) used in nuclear facilities, from the medium to large scale. The clogging kinetics of industrial pleated HEPA filters is monitored by measuring the pressure drop of the filters and the filtered air temperature at a given filtration velocity (from 0.23 to 2.1 cm/s). Upstream HEPA filters, combustion aerosols are characterized in terms of size distribution, mass concentration, composition, and particle morphology using, respectively, a DMS500 (CambustionLTD), glass fiber filter sampling, and transmission electron microscope analysis of particles deposited on TEM grids. Particles emitted denote well-known fractal morphology, are composed of carbonaceous primary particles with diameters ranging from 31 nm to 48 nm and showing an high clogging efficiency. An empirical relationship has been successfully applied to the obtained results for a larger range of fuels, filtration velocities and fire conditions.

Finally, experiments have been performed on a large-scale facility, using full-scale fire scenarios (electrical cabinet, constant, and variable filtration velocity) and a reasonable agreement was observed with our empirical relationship. At this scale, particles appear to be compact, with a complex composition and diameters close to 220 nm with a lower clogging efficiency.

Copyright 2014 American Association for Aerosol Research  相似文献   


8.
The silicon carbide (SiC) ceramic filter is the most favorable component to remove particulate matter from hot flue gas due to its high filtration efficiency and high thermal durability. The effect of SiC powder size on the physical properties and filtration performance to prepare high-performance granular ceramic filter media was investigated in this study. Disk-type filter media were prepared by mixing ceramic components followed by physical compression and sintering. The porosity and average pore diameter in the filter media increased with increasing powder size. However, the mechanical strength decreased with increasing powder size, while it increased with increasing physical compressive force. The filter performance factor, qFM was introduced to evaluate the ceramic filter properties, and the SiC50 filter was the best of the ceramic filters prepared in this study. We also found that diffusion was a dominant collection mechanism for particles smaller than 0.7 μm, and direct interception and inertia were dominant collection mechanisms for particles larger than 0.7 μm in the SiC50 filter based on a single collector efficiency model. In addition, the predicted collection efficiencies showed reasonably good agreement with the experimental ones.

Copyright 2014 American Association for Aerosol Research  相似文献   


9.
The influence of volatilization from mainstream tobacco smoke particles in annular denuders on the gas-particle distribution was investigated by using multiple annular denuders coupled with a filter pack method (multiple-AD-FP method) under low flow volume conditions (1.05 and 1.65 L/min). Smoking experiments and model experiments using poly styrene latex (PSL) particles and generated gases were conducted to measure the particle loss ratio and gas collection efficiency in the denuders. In this research, we focused on the influence of XAD-4 slurry concentrations and particle volatility including tobacco smoke from a cigarette and vapor products on the volatilization from particles in the denuders, and have proposed a measurement method for considering volatilization. Our experimental results showed that volatilization depends on the particle volatility, targeted components, denuder length, particle concentration, and adsorbent amount, thereby suggesting the importance of selecting the proper measurement conditions and taking volatilization into account, so as to evaluate the appropriate gas-particle distribution. The gas-phase nicotine ratio obtained from calculating the volatilization rate in the multiple-AD-FP method agreed with previous research. This means that the calculation method was appropriate for the evaluation of gas-particle distribution. Furthermore, the gas-particle ratio determined through the multiple-AD-FP method was compared to that determined through a filter-impinger method that uses a glass fiber filter. The results revealed that most of the gases in the filter-impinger method were not collected in the impinger due to the condensation of gases on the surface of the filter fibers and collected particles.

© 2017 American Association for Aerosol Research  相似文献   


10.
In the present work, the centrifugal filter proposed by the authors was applied to classify aerosol particles followed by the detection of total mass or number concentrations so as to measure the size distribution of aerosol particles. The structure and operating condition of the centrifugal filter were optimized in order to attain sharp separation curves with various cut-off sizes between 0.3 and 10 μm. The aerosol penetrating the centrifugal filter at various rotation speeds was measured with a photometer to determine the total mass concentration. The virtue of this system is that the cut-off size is varied just by scanning the rotation speed of filter and that it can be applied to the measurement of high concentration aerosols without dilution by choosing an appropriate filter medium. As a result, the centrifugal filter was successfully applied to measure the size distribution of solid particles in size ranging from 0.3 to 10 μm.

Copyright © 2017 American Association for Aerosol Research  相似文献   


11.
While our knowledge of fiber formation by using conventional nanofiber spinning techniques has increased to a considerable extent, there are still few studies on centrifugal spinning either in academia or in the industry. Centrifugal spinning is a comparatively new method of producing fibers having nano- or microscale diameters. In this study, three main parameters (nozzle orifice diameter, rotational speed, polymer concentration) of centrifugal spinning were optimized to produce air filter media from thermoplastic polyurethane nanofibers. The effect of concentration of polymer solution was found to be a major contributor in TPU fibers optimization estimating 77.5%. After the optimization studies, the average fiber diameter of nanofiber sample produced at optimum conditions (22G needle as an orifice, 4000 rpm, and 10 wt% concentration of polymer solution) was 205 ± 84 nm. Aerosol filtration performance of the produced webs was analyzed. Filtration efficiency of the optimized sample was found to be 99.4% for 0.3 µm particle size at an expense of 98 Pa pressure drop.

Copyright © 2018 American Association for Aerosol Research  相似文献   


12.
A horizontal inlet was employed to improve the collection efficiency of a rectangular-slit-nozzle impactor. A numerical and experimental study of the collection efficiency of rectangular-slit-nozzle impactors, with either typical inlets or horizontal inlets, was conducted. In the comparison of typical inlet impactors and horizontal-inlet impactors, parameters such as the nozzle width, impaction plate width, nozzle-to-plate distance, and aerosol flow rate were held constant, and only the inlet shape was changed. A parametric study was conducted to examine the effects of the horizontal inlet dimensions on the collection efficiency of rectangular-slit-nozzle impactors. It was found that a horizontal inlet could reduce the square root of the Stokes number corresponding to the cutoff size from 0.77 to 0.60, compared with a typical inlet.

Copyright 2014 American Association for Aerosol Research  相似文献   


13.
Conventional methods to measure the metallic content of particles by size are time consuming and expensive, requiring collection of particles with a cascade impactor and subsequent metals analysis by inductively coupled plasma mass spectrometry (ICP-MS). In this work, we describe a rapid way to measure the size distribution of metal-containing particles from 10 nm to 20 µm, using a nano micro-orifice uniform-deposit impactor (nano-MOUDI) to size-selectively collect particles that are then analyzed with a field portable X-ray fluorescence (FP-XRF) device to determine metal composition and concentration. The nano-MOUDI was used to sample a stainless-steel aerosol produced by a spark discharge system. The particle-laden substrates were then analyzed directly with FP-XRF and then with ICP-MS. Results from FP-XRF were linearly correlated with results from ICP-MS (R2 = 0.91 for Fe and R2 = 0.84 for Cr). Although the FP-XRF was unable to effectively detect Fe particles at mass per substrate loadings less than 2.5 µg effectively, it produced results similar to those from ICP-MS at a mass per substrate loadings greater than 2.5 µg.

Copyright © 2017 American Association for Aerosol Research  相似文献   


14.
Presented is a laminar-flow, water-based condensation particle counter capable of particle detection near 1 nm. This instrument employs a three-stage, laminar-flow growth tube with a “moderator” stage that reduces the temperature and water content of the output flow without reducing the peak supersaturation, and makes feasible operation at the large temperature differences necessary for achieving high supersaturations. The instrument has an aerosol flow of 0.3 L/min, and does not use a filtered sheath flow. It is referred to as a “versatile” water condensation particle counter, or vWCPC, as operating temperatures can be adjusted in accordance with the cut-point desired. When operated with wall temperatures of ~2°C, >90°C, and ~22°C for the three stages, respectively, the vWCPC detects particles generated from a heated nichrome wire with a 50% efficiency cut-point near 1.6 nm mobility diameter. At these operating temperatures, it also detects 10–20% of large molecular ions formed from passing filtered ambient air through a bipolar ion source. Decreasing the temperature difference between the first two stages, with the first and second stages operated at 10 and 90°C, respectively, essentially eliminates the response to charger ions, and raises the 50% efficiency cut-point for the nichrome wire particles to 1.9 nm mobility diameter. The time response, as measured by rapid removal of an inlet filter, yields a characteristic time constant of 195 ms.

Copyright © 2017 American Association for Aerosol Research  相似文献   


15.
To assess indoor bioaerosols, a virtual impactor having 1 µm cutoff diameter was designed, fabricated, and evaluated with computational fluid dynamics simulation and also with laboratory test using polystyrene latex particles. Two other cutoff diameters of 635 nm and 1.5 µm were obtained by changing the inlet flow rate and the ratio of minor channel-to-inlet flow rates. In field test, the virtual impactor was operated with varying cutoff diameter and field-emission scanning electron microscope (FE-SEM) analysis was performed for each cutoff diameter to observe morphologies of indoor aerosol particles sampled at the major and minor outlet channels. Particles were sampled at both outlet channels using the SKC Button Aerosol sampler and subsequently cultured. By colony counting, it was found that 56% of cultured fungal particles and 63% of cultured bacterial particles had aerodynamic sizes smaller than 1 µm. MALDI-TOF analysis and visual inspection of culture samples were used to identify indoor bacterial and fungal species, respectively. Nearly same species of bacteria and fungi were detected both in the major and minor flow channels.

© 2017 American Association for Aerosol Research  相似文献   


16.
Objectives: The aim of this study was to evaluate the effect of bioactive glass–ceramic particles (Biosilicate®) addition on surface nanoroughness and topography of Resin-modified glass ionomer cements (RMGICs).

Methods: Experimental materials were made by incorporating 2 wt% of Biosilicate® into Fuji II LC® (FL) and Vitremer® (VT) powders. Disks of RMGICs (with and without Biosilicate®) measuring 0.5 cm (diameter) × 0.5 mm (thickness) were fabricated and polished. Samples were stored at 37 °C in dry or immersed in distilled water for 30 days. Digital images (20 × 20 μm) from the surfaces were obtained by means of an atomic force microscopy. Three images were acquired for each sample, and four nanoroughness measurements were performed in each image. Nanoroughness (Ra, nm) was assessed by Nanoscope Software V7. Data were analyzed with ANOVA and Student–Newman–Keuls multiple comparisons (p < 0.05). SEM images were obtained for surface topography analysis.

Results: FL was significantly rougher than VT (p < 0.05) in wet and dry conditions. The addition of Biosilicate® increased the surface roughness in VT and decreased in FL, regardless of the storage media (p ≤ 0.05). No differences existed between materials and storage conditions after Biosilicate® addition. Significance: The Biosilicate® particles addition produced changes on the surface nanoroughness of the RMGICs. These changes depended on the particles size of the original cements in dry conditions. In water storage, dissolution of the Biosilicate® particles, a silica-rich gel formation, and a hydroxyl carbonate apatite precipitation on the surface of the materials changed the nanoroughness surface. FL was the roughest in both conditions.

Significance: The Biosilicate® particles addition produced changes on the surface nanoroughness of the RMGICs. These changes depended on the particles size of the original cements in dry conditions. In water storage, dissolution of the Biosilicate® particles, a silica-rich gel formation, and a hydroxyl carbonate apatite precipitation on the surface of the materials changed the nanoroughness surface. FL was the roughest in both conditions.  相似文献   


17.
The CIP 10-M personal sampler measures worker exposure to airborne particles by collecting particles in a rotating metal cup containing a few milliliters of a collection fluid. This device is mainly used to sample microorganisms or microbial components to measure bioaerosol concentrations in various occupational environments. Aqueous liquids are generally used, but their rapid evaporation limits the duration of sampling; alternative collection fluids could alleviate this problem. Indeed, the particle-collection efficiency of the rotating cup has not been extensively studied, and the only data available relate to a discontinued model. This study aimed to measure the collection efficiency of the current rotating cup model containing an aqueous (water) or viscous (ViaTrap mineral oil) collection fluid. The kinetics of evaporation confirmed that ViaTrap does not evaporate, making 8-h sampling campaigns in constant volumes feasible. Particles with a wide range of aerodynamic diameters (between around 0.1 and 10 µm) were produced using various test rigs and mono- or polydisperse test aerosols. Both new and older cup models performed similarly, with a collection efficiency of >80% for larger particles (aerodynamic diameters >2.8 µm), progressively decreasing to around 50% for aerodynamic diameters of 2.1 µm; with aerodynamic diameters of <1 µm, the collection efficiency was generally <10%. In physical terms, collection efficiency was unaffected by the type (aqueous or viscous) or volume (between 0 and 3 mL) of collection fluid used. Bias maps indicated that the inhalable fraction may be underestimated in occupational settings, particularly with aerosols mainly composed of particles with aerodynamic diameters of less than around 3 µm.

Copyright © 2016 American Association for Aerosol Research  相似文献   


18.
Fibrous filters are commonly used for aerosol purification and sampling. The filtration efficiency has been extensively studied using standard aerosol generators, yet the literature on experimental data and theoretical study concerning the filtration of agglomerates from real engines remains scarce. A filtration efficiency test system was developed to determine the filtration efficiency of two types of filters (uncoated and fluorocarbon coated) loaded by particulate matter (PM) emissions from a gasoline direct injection (GDI) engine. The experimental results showed that the filtration efficiency in terms of PM mass and number increased over time for both types of filters. The fractional efficiency (penetration efficiency) curves for the test fibrous filters rendered a U-shaped curve for particle sizes from 70 to 500 nm, and the most penetrating particulate size (MPPS) decreased over time. A small fraction of accumulation mode particles with the size between 70 nm to 500 nm penetrated the filters while almost all nucleation mode particles with the size below 50 nm were captured by the filters. The filtration efficiency derived from an empirical model based on classical single-fiber theory for laden filters generally agreed with the experimental data for the first 500 s, but suffered a significant deviation by approximately one order of magnitude at 948 s. A better estimate of the filtration efficiency trend with the maximum deviation of about 20% (except for large particles at the high end of the measurement spectra) was obtained by using a revised model which incorporates the effects of the increase in filter solidity, local velocity, dynamic shape factor and effective total length of fibers during the filtration process.

© 2017 American Association for Aerosol Research  相似文献   


19.
This article presents a cylindrical counter-current flow diffusion denuder with high efficiency penetration of nanoparticles, for non-specific removal of trace gases from an air flow. The denuder was designed to exchange gases in the sample flow by diffusion to the purge flow across a cylindrical microporous glass tube. Laboratory test results indicated that removal efficiencies of gases increased with a lower sample flow rate and a higher sample to purge flow rate ratio. Additionally, the pore size of the microporous glass did not affect gas removal efficiency and particle penetration following optimization of sample and purge flow rate conditions. Significantly high particle penetration was obtained for the counter flow denuder technique (94% penetration for 20 nm of polystyrene latex particle [PSL]) that agreed with theoretical estimation attributed to diffusion loss.

Copyright © 2017 American Association for Aerosol Research  相似文献   


20.
Aerosol sampling and identification is vital for the assessment and control of particulate matter pollution, airborne pathogens, allergens, and toxins and their effect on air quality, human health, and climate change. In situ analysis of chemical and biological airborne components of aerosols on a conventional filter is challenging due to dilute samples in a large collection region. We present the design and evaluation of a micro-well (µ-well) aerosol collector for the assessment of airborne particulate matter (PM) in the 0.5–3 µm size range. The design minimizes particle collection areas allowing for in situ optical analysis and provides an increased limit of detection for liquid-based assays due to the high concentrations of analytes in the elution/analysis volume. The design of the collector is guided by computational fluid dynamics (CFD) modeling; it combines an aerodynamic concentrator inlet that focuses the aspirated aerosol into a narrow beam and a µ-well collector that limits the particle collection area to the µ-well volume. The optimization of the collector geometry and the operational conditions result in high concentrations of collected PM in the submillimeter region inside the µ-well. Collection efficiency experiments are performed in the aerosol chamber using fluorescent polystyrene microspheres to determine the performance of the collector as a function of particle size and sampling flow rate. The collector has the maximum collection efficiency of about 75% for 1 µm particles for the flow rate of 1 slpm. Particles bigger than 1 µm have lower collection efficiencies because of particle bounce and particle loss in the aerodynamic focusing inlet. Collected samples can be eluted from the device using standard pipettes, with an elution volume of 10–20 µL. The transparent collection substrate and the distinct collection region, independent of particle size, allows for in situ optical analysis of the collected PM.

© 2017 American Association for Aerosol Research  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号