首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Cabin air filters are the main barrier for protecting automobile passengers from on road particulate matter. There are many studies about the evaluation of their performance in terms of filtration efficiency. However, the knowledge about the loading capacity of them is still lacking. Meanwhile, there has been no quantitative method to estimate the proper filter service life time. This study focuses on testing the loading capacity of different types of cabin air filters under the conditions of different relative humidity values and particle types. The results indicate that when the relative humidity increases, the activated carbon coated filters can adsorb significant amounts of water with no significant increase of the pressure drop. The normal fibrous filters show in contrast negligible water adsorbance. Compared with the filters loaded by Arizona road dust only, loading the filters by Arizona road dust and soot particles simultaneously will result in the steeper loading curves as well as the shift of most penetrating particle size to the smaller diameter. Finally, a new method to estimate the proper service life time of the cabin air filters is suggested based on the loading curves.

© 2016 American Association for Aerosol Research  相似文献   


2.
It is currently admitted that for each filtration process using pleated filters, at least three steps can be distinguished: depth and surface filtration, which are common to flat filters, and surface reduction. This step is caused by inefficient filling of the pleat due to the filter geometry. For combustion aerosol, it has been proved that this third step strongly depends on the filtration velocity resulting in an increase of the resistance when air flow decreases. This observation leads one to think that Brownian diffusion, higher for low velocities, could influence the clogging dynamic of a pleated filter.

In this article, a protocol derived from the dust cake preparation method published by Schmidt is developed. The aim of this study is to measure the aerosol penetration inside a filter media as well as in a pleat using a scanning electronic microscope and energy dispersive X-ray spectroscopy elementary detection. This method has also been extended to the study of pleated filters to measure the particle distribution inside the pleat. Filters were loaded with nanoparticles in order to evaluate the specificity of the diffusional regime on the clogging of pleated HEPA filters. For pleated filters, two filtration velocities were investigated: 2.5 and 0.2 cm/s.

Copyright 2014 American Association for Aerosol Research  相似文献   


3.
The dust loading has a significant influence on the transient performance of air filters. This study developed two models based on the Lagrangian and Eulerian methods to simulate the unsteady filtration process in the pleated filter. The flow field through the filter was calculated by solving the Navier-Stokes equation with the DES-SA turbulence model. The filter media and the cake layer were modeled as the porous zone. The Lagrangian method tracked the particle trajectories to model the particle motion, but the Eulerian model treated the particle as continuous phase. Two cell models were proposed to simulate the transient particle deposition and the cake layer growth on the filter medium surface for the Lagrangian and Eulerian methods, respectively. The simulated results were validated by the available experimental data. Both of the methods could provide relative accurate results with acceptable error. But the computing speed of Eulerian model was faster than the Lagrangian method. Otherwise, the new developed Eulerian model was used to investigate the effect of dust loading on the optimal design of pleated filter.

© 2016 American Association for Aerosol Research  相似文献   


4.
The performance of electrostatically charged blown microfiber filter media was characterized for high-volume sampling applications. Pressure drop and aerosol collection efficiency were measured at air pressures of 55.2 and 88.7 kilopascals (kPa) and filter face velocities ranging from 2.5 to 11.25 meters per second (m/s). Particle penetration was significant for particles above 0.5 micrometers (μm) in aerodynamic diameter where the onset of particle rebound was observed as low as 200 nanometers (nm). Particle retention was enhanced by treating filters in an aqueous solution of glycerol. Adding this retention agent eliminated electrostatic capture mechanisms but mitigated inertial rebound. Untreated filters had higher nanoparticle collection efficiencies at lower filter face velocities where electrostatic capture was still significant. At higher filter face velocities, nanoparticle collection efficiencies were higher for treated filters where inertial capture was dominant and particle rebound was mitigated. Significant improvements to microparticle collection efficiency were observed for treated filters at all air flow conditions. At high air pressure, filter efficiency was greater than 95% for particles less than 5 μm. At low air pressure, performance enhancements were not as significant since air velocities were significantly higher through the fiber mat. Measured single fiber efficiencies were normalized by the theoretical single fiber efficiency to calculate adhesion probability. The small fiber diameter (1.77 μm) of this particular filter gave large Stokes numbers and interception parameters forcing the single fiber efficiency to its maximum theoretical value. The adhesion probability was plotted as a function of the ratio of Stokes and interception parameter similar to the works of others. Single fiber efficiencies for inertial nanoparticle collection were compared to existing theories and correlations.

Copyright 2014 American Association for Aerosol Research  相似文献   


5.
An external electric field was applied on the filter to improve its collection efficiency, and the collection efficiencies of the different filters under various conditions were evaluated. Dominant electrical filtration mechanisms for each condition were investigated using experimental and theoretical approaches. Four types of air filters were used as test filters: a charged fiber filter, a low-grade filter with 50% collection efficiency in the most penetration particle size (MPPS) zone, and two high-grade filters with more than 95% collection efficiency in the MPPS zone. Three different particle charge states—neutralized, single-charged and uncharged—were considered. For neutralized particles, the external electric field led to a 14.5%p. and 2.5%p. increase in the collection efficiencies of the low-grade filter and charged fiber filter, respectively. With the electric field, the collection efficiency of the low-grade filter increased by 30%p. for single-charged particles. The electric field also affected the collection efficiencies of the charged filter and high-grade filters, but the effect was not significant. For uncharged particles, the electric field did not lead to a remarkable increase in the collection efficiencies of any of the filters. Through experimental and theoretical analysis, it was found that the polarization force imposed on the charged fiber was the dominant factor for the charged fiber filter regardless of application of the external electric field. The Coulombic force imposed on the electric field was the dominant factor for the low-grade filter, while both the Coulombic and the polarization forces affected the collection efficiency of the high-grade filter.

Copyright © 2017 American Association for Aerosol Research  相似文献   


6.
The Institute of Radioprotection and Nuclear Safety (IRSN in French) is conducting research on the impact of a fire on the behaviour of containment devices such as high efficiency particulate air (HEPA) pleated filters for radioactive materials. This work aims to study the clogging of HEPA filters in case of fire involving realistic materials (polymers making up gloves boxes, waste treatment solvent, hydraulic oil, solid material mixtures making up a trash bin, electrical cables, and cabinets) used in nuclear facilities, from the medium to large scale. The clogging kinetics of industrial pleated HEPA filters is monitored by measuring the pressure drop of the filters and the filtered air temperature at a given filtration velocity (from 0.23 to 2.1 cm/s). Upstream HEPA filters, combustion aerosols are characterized in terms of size distribution, mass concentration, composition, and particle morphology using, respectively, a DMS500 (CambustionLTD), glass fiber filter sampling, and transmission electron microscope analysis of particles deposited on TEM grids. Particles emitted denote well-known fractal morphology, are composed of carbonaceous primary particles with diameters ranging from 31 nm to 48 nm and showing an high clogging efficiency. An empirical relationship has been successfully applied to the obtained results for a larger range of fuels, filtration velocities and fire conditions.

Finally, experiments have been performed on a large-scale facility, using full-scale fire scenarios (electrical cabinet, constant, and variable filtration velocity) and a reasonable agreement was observed with our empirical relationship. At this scale, particles appear to be compact, with a complex composition and diameters close to 220 nm with a lower clogging efficiency.

Copyright 2014 American Association for Aerosol Research  相似文献   


7.
This paper presents results from a water treatment pilot testing program in Winnipeg, Canada (pop. 650,000) which evaluated a DAF/ozone/deep bed filtration process. As part of the testing program, biological filtration using GAC and anthracite media was assessed for the removal of ozone DBPs and background chlorine DBPs (due to upstream chlorination of the source water). The results were used to evaluate the effectiveness of biological filtration for DBP removal.

High filtration rates were tested in this study. The 2.1m deep filters were run at a hydraulic loading rate (HLR) of 35 m/h with an empty bed contact time (EBCT) of only 3.6 minutes.

The important findings of this work are

?The high-rate biologically active carbon (BAC) filters met the objective of controlling ozone DBPs. These results confirm that high rate, low EBCT filters can provide significant biodegradation. Anthracite biofilters provided significantly less removal of ozone DBPs.

?The high rate BAC filters showed significant reduction of background HAAs. BAC reduced the background HAAs to below the long-term target of 30 μg/L. Anthracite biofilters did not exhibit HAA removal.

?Biological filtration with either media was ineffective for background THM removal. The long-term target of 40 μg/L could not be achieved without GAC adsorption.  相似文献   


8.
Cleanable dust filter media are typically used in huge baghouse filter apparatuses. Thereby, the regeneration by back-pulsing from the clean gas side is done by either time-controlled or pressure-controlled operation, whereas the latter is more common. Hence, the need for a detailed knowledge of the clogging and filtration mechanisms during long time operation of a pressure-controlled filter aging arises.

A mathematical model describing the pressure drop evolution during time-controlled filter aging has been developed. The core of the developed model is the concept of dust masses that distribute themselves on a specific particle deposition area inside and on the surface of the filter medium. By altering this particle deposition area, various clogging mechanisms, occurring during an aging procedure, are covered by the model.

In this work, the model was adapted and coefficient parameters adjusted for pressure-controlled filter regeneration operation. A multitude of pressure-controlled test runs were performed in a specially designed filtration apparatus. From these tests, process-specific parameters were regressed and used to model the respective pressure drop curves. These model pressure drop curves show good accordance both quantitatively and qualitatively to experimental data and give a detail view on different clogging mechanisms.  相似文献   


9.
Based on the theories of acoustic agglomeration and dust wet removal, an experimental apparatus was constructed to study the combined effects of acoustic agglomeration and atomization humidification in the pretreatment process to analyze the filtration performance of filter material. According to the concentration of coal-fired fly ash chosen in the experiments, the proper amount of atomization humidification and the proper sound pressure level (SPL) were determined. Under the relative humidity (RH) of 69% and with SPL in the range of 100 dB to 135 dB, the removal efficiency of fly-ash, the compressibility of the fly-ash particle layer on the filter media, and the performance of pulse filter cleaning were studied. The results indicate that the combined effects of sound fields and atomization humidification can effectively remove PM10 and PM2.5, and change the interaction and movement of particles, which can improve the pore structure of the fly-ash particle layer and increase the porosity of the dust layer. The results also indicate that with the proper amount of atomization humidification and appropriate SPL, the joint acoustic-atomization pretreatment can delay the filter material blocking, which reduces the pulse filter cleaning frequency and extends the filter cleaning cycle. It can also reduce the residual resistance after filter cleaning and prolong the operating lifetime of the filter media.

© 2017 American Association for Aerosol Research  相似文献   


10.
Man-made vitreous fibers (MMVFs) are noncrystalline substances made of glass, rock or slag and are widely used as thermal or acoustic insulation materials. There is continued concern about their potential health impacts and thus, their dosimetry and behavior in the environment still require study using filters to collect fiber samples. After deposition or exposure measurements of MMVFs it is often necessary to analyze the filters with deposited fibers. This task is tedious, time-consuming, and requires skill. Therefore, many researchers have tried to simplify or automatize fiber detection and quantification. This article describes features of our in-house software, which automatically detects and counts fibers in images of filter samples. The image analysis is based on the use of a histogram equalization and an adaptive radial convolution filter that enhances fiber contrast and thus, improves the fiber identification. The accuracy of the software analysis was verified by comparison with manual counting using ordinary phase-contrast microscopy method. The correlation between the methods was very high (coefficient of determination was 0.977). However, there were some discrepancies caused by false identifications, which led to implementation of manual corrective functions.

Copyright © 2016 American Association for Aerosol Research  相似文献   


11.
Soot particle removal performance of two types of metallic filter media, sintered metal powder and sintered metal fiber, is experimentally evaluated as potential improvements to conventional ceramic filtration media for gasoline direct injection (GDI) engine PM after-treatment application. Soot collection efficiency and flow resistance of several grades of metallic media are measured at temperatures of 25, 350, and 650°C and a range of representative filtration velocities for sub-micrometer soot particles generated from a propane flame. Theoretical collection efficiency based on single fiber efficiency theory shows good agreement with experimental data for nearly spherical KCl particles at 350°C. Improved collection efficiency is observed for soot particles in the interception-dominated size range above ~100 nm due to enhanced interception length. Soot collection is slightly enhanced at higher temperature, which is consistent with model predictions. Sintered metal fiber media are found capable of removing ~75% of soot particles by mass with an incremental flow resistance of less than 1.5 kPa under 10 cm/s and 350°C, which is promising for gasoline particulate filter (GPF) application. The media level figure of merit (FOM) is used to quantify the soot collection efficiency versus flow resistance tradeoff of all media tested. It is found that due to their more open structure (higher porosity) sintered metal fiber media have FOMs nearly one order of magnitude higher than those of sintered metal powder media, and by analogy those of conventional wall flow ceramic media. This suggests that sintered metal fiber media represents an attractive alternative to ceramic media for designing GPFs; however, further research into creating comparable surface area to the honeycomb structures used for wall flow filters is needed to extract the full potential of metal fiber media.

Copyright © 2017 American Association for Aerosol Research  相似文献   


12.
A very compact cascade impactor with 2 L/min sampling flow rate has been developed. Its dimensions are 8.5 cm L x 5.0 cm W x 11.4 cm H, and it weighs 0.27 kg, with ten impaction stages with aerodynamic cutpoints in the range of 60 nm to 9.6 μm. The top eight stages, collecting particles down to 170 nm in aerodynamic diameter, can be used as a stand-alone impactor with a portable, battery-powered pump. Particle collection efficiencies were obtained with two types of commonly used substrates, aluminum foil and glass fiber filters. Impactor cutpoints with aluminum foil substrates agree well with conventional impactor theory. The efficiency curves are sharp with minimum overlap between them. Thus, the compact impactor design does not compromise its performance, making it suitable for general purpose applications where a lower sampling flow rate provides adequate mass collection. With glass fiber filter substrates, impactor cutpoints are smaller and the efficiency curves are less steep, in particular for the last stages. Also, the collection efficiency curves do not drop to near zero at small Stokes numbers. Instead, excess particle collection efficiency of around 10% is observed for the top six stages, and becomes higher for the last four stages. This is due to the collection of particles by filtration as the impinging jets penetrate the filter substrate. Thus, using glass fiber filter substrates should generally be avoided due to the non-ideal effect on the impactor collection efficiency curves, especially for the last two stages.

Copyright © 2018 American Association for Aerosol Research  相似文献   


13.
Bioaerosols, such as bacterial and fungal cells and their spores, are components of indoor airborne particulate matter and have been associated with human health problems as well as various environmental issues. Natural antimicrobial products have been used in air filters for bioaerosol control. However, natural products may lose some function due to their sensitivity to environmental factors such as temperature and humidity. In this study, we investigated the effects of temperature on antimicrobial fiber filters coated with nanoparticles of a natural product, namely, Sophora flavescens extract. Inactivation efficiency decreased with increasing temperature and treatment time. A quantitative chemical analysis of the filters revealed that the quantities of antimicrobial compounds decreased noticeably, with a consequent decrease in antimicrobial activity. In addition, the S. flavescens nanoparticles on the filter fiber surface melted gradually as treatment time increased at temperatures >100°C. This change in nanoparticle morphology in turn affected the pressure and filtration efficiency of filters, both of which decreased with increasing temperature and treatment time. These results could provide a scientific basis for the improvement of indoor air-quality control using antimicrobial air filters coated with S. flavescens nanoparticles.

Copyright 2014 American Association for Aerosol Research  相似文献   


14.
Conventional methods for total dust sampling from industrial high-temperature aerosols containing condensable species, e.g., in boilers of municipal solid waste incinerators (MSWI), are always influenced by condensation artifacts. Therefore, we extended the scope of a previously developed probe intended for size-fractionated aerosol sampling with reduced artifacts and employed it for total dust measurements. The dust is collected on quartz fiber filters, which are gravimetrically evaluated and chemically analyzed by energy dispersive X-ray spectroscopy and wet-chemical methods. First measurements in the boiler of an MSWI confirm that the probe is also suitable for artifact-minimized total dust sampling. The data are consistent with results from measurements with the size-fractionating method conducted in parallel. By combining the results of both sampling methods, we reveal the average chemical composition of the submicron particles in the aerosol, which is not accessible by one of the two methods alone.

© 2017 American Association for Aerosol Research  相似文献   


15.
The silicon carbide (SiC) ceramic filter is the most favorable component to remove particulate matter from hot flue gas due to its high filtration efficiency and high thermal durability. The effect of SiC powder size on the physical properties and filtration performance to prepare high-performance granular ceramic filter media was investigated in this study. Disk-type filter media were prepared by mixing ceramic components followed by physical compression and sintering. The porosity and average pore diameter in the filter media increased with increasing powder size. However, the mechanical strength decreased with increasing powder size, while it increased with increasing physical compressive force. The filter performance factor, qFM was introduced to evaluate the ceramic filter properties, and the SiC50 filter was the best of the ceramic filters prepared in this study. We also found that diffusion was a dominant collection mechanism for particles smaller than 0.7 μm, and direct interception and inertia were dominant collection mechanisms for particles larger than 0.7 μm in the SiC50 filter based on a single collector efficiency model. In addition, the predicted collection efficiencies showed reasonably good agreement with the experimental ones.

Copyright 2014 American Association for Aerosol Research  相似文献   


16.
The IMPROVE (Interagency Monitoring of PROtected Visual Environments) network monitors the attenuation of light by PM2.5 samples (fine particulate matter, Daero = 2.5 μm) routinely collected on polytetrafluoroethylene (PTFE) filters throughout the United States. The results of this measurement have long been reported as an indicator of absorption, with no rigorous calibration as such. Filter-based absorption measurements more conventionally employ optically thick quartz- or glass-fiber collection media, for which a substantial calibration literature offers algorithms to correct for particle scattering and filter loading effects. PTFE membranes are optically thinner and less homogeneous than the fiber media, but they avoid interference from adsorbed organic gases that is associated with quartz and glass fiber media. IMPROVE's measurement system is a hybrid of integrating sphere and integrating plate that records the light backscattered as well as transmitted by each filter. This article introduces and validates a theory-based model for calibration and data reduction that accounts for particle scattering effects as well as variations in filter optics. Tests based on historical analyses of field blanks and recent reanalyses of archived samples establish that the current system has operated with a stable calibration since 2003.

The newly calibrated IMPROVE absorption values correlate strongly with the refractory carbon fraction reported by thermal-optical analysis as “elemental” (EC). EC is sometimes treated as the only significant light absorber in PM2.5, but the general decline observed between 2005 and 2014 in IMPROVE EC was not accompanied by a comparable decline in IMPROVE absorption. Absorption also exhibits a distinct association with Fe concentrations, which at IMPROVE sites are attributable mainly to mineral dusts and have generally held steady or risen since 2003. An increased relative contribution by mineral dusts can explain some, but not all, of the observed difference between recent absorption and EC trends.  相似文献   


17.
Many well-established models can be applied to calculate the filtration efficiencies. In these models the filtration velocity and challenging particle size are assumed to be known accurately. However, in realistic filtration tests, the filtration velocity has profiles dependent on the filter holder geometry and experimental conditions; the challenging particles have size distributions dependent on the instruments and operation conditions. These factors can potentially affect the measured filtration efficiency and lead to discrepancies with the models.

This study aims to develop an integrative model to predict the filtration efficiencies in realistic tests by incorporating the effects of the filtration velocity profile and challenging particle size distribution classified by a differential mobility analyzer (DMA) into the existing filtration models. Face velocity profile is modeled with fluid mechanics simulations; the initial generated particle size distribution, the particle charging status and the DMA transfer function are modeled to obtain the challenging particle size distribution. These results are then fed into the filtration models. Simulated results are compared with experimental ones to verify the model accuracy. This model can be used to reduce filtration test artifacts and to improve the experimental procedure.

The results reveal that the face velocity upstream the filter exhibits high degree of homogeneity not affecting the filtration efficiency if the filter pressure drop is not very low. The generated particle size distribution and the DMA selection size window could influence the challenging particle size distribution and therefore the measured filtration efficiency.

Copyright © 2017 American Association for Aerosol Research  相似文献   


18.
Absorption enhancement and shadowing effects were investigated for nigrosin-laden quartz (fibrous), Teflon (matted), and polycarbonate (membrane) filters in inert surroundings at different sample steady-state temperatures and particle mass loadings. Sample absorptivity was determined using a novel laser-heating technique, which is based on perturbing the sample steady-state temperature and monitoring the thermal response during decay back to steady state, along with a model for thermal energy conservation. In addition, transmissivity measurements were carried out to enable determination of the sample absorption coefficient. The results indicated that the isolated-nigrosin absorption coefficient decreased with steady-state temperature and increased with mass loading and filter pore size. Comparing the absorption coefficient for both the isolated nigrosin and nigrosin-laden filters, indicated that absorption enhancement was most significant for the Teflon filters and least significant for the polycarbonate filters. The effect became more significant as the pore size decreased, steady-state temperature increased, and particle mass loading decreased. The decrease in the isolated-nigrosin, mass-specific absorption cross-section with heavier sample loadings was attributed to shadowing effects.

Copyright 2014 American Association for Aerosol Research  相似文献   


19.
Fibrous filters are commonly used for aerosol purification and sampling. The filtration efficiency has been extensively studied using standard aerosol generators, yet the literature on experimental data and theoretical study concerning the filtration of agglomerates from real engines remains scarce. A filtration efficiency test system was developed to determine the filtration efficiency of two types of filters (uncoated and fluorocarbon coated) loaded by particulate matter (PM) emissions from a gasoline direct injection (GDI) engine. The experimental results showed that the filtration efficiency in terms of PM mass and number increased over time for both types of filters. The fractional efficiency (penetration efficiency) curves for the test fibrous filters rendered a U-shaped curve for particle sizes from 70 to 500 nm, and the most penetrating particulate size (MPPS) decreased over time. A small fraction of accumulation mode particles with the size between 70 nm to 500 nm penetrated the filters while almost all nucleation mode particles with the size below 50 nm were captured by the filters. The filtration efficiency derived from an empirical model based on classical single-fiber theory for laden filters generally agreed with the experimental data for the first 500 s, but suffered a significant deviation by approximately one order of magnitude at 948 s. A better estimate of the filtration efficiency trend with the maximum deviation of about 20% (except for large particles at the high end of the measurement spectra) was obtained by using a revised model which incorporates the effects of the increase in filter solidity, local velocity, dynamic shape factor and effective total length of fibers during the filtration process.

© 2017 American Association for Aerosol Research  相似文献   


20.
Electret monolith filters have the advantage of low pressure drop and high filtration efficiency. In such filters, the filtration of submicron aerosol particles occurs as air passes through millions of microchannels. This article investigates the flow and filtration mechanisms in a representative rectangular microchannel of an electret monolith filter. An improved incompressible lattice Boltzmann method with Bhatnagar–Gross–Krook (traditionally shortened as LBGK) and lattice velocity D3Q15 model is employed to simulate no-slip and slip flows in the rectangular microchannels of a monolith filter. We considered mono-disperse submicron particles and one-way coupling (particle motion was affected by the flow, but the presence of particles did not affect the flow). Based on flow computations, the effects of key dimensionless parameters (Reynolds number, Knudsen number, Stokes number and the dimensionless length of the channel) on the total capture efficiency of mono-disperse submicron particles were investigated. Our results indicate that the optimal monolith filter should be characterized by a Knudsen number between 0.022 and 0.044, and that the dimensionless length of the channel should be between 4 and 8.

Copyright © 2016 American Association for Aerosol Research  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号