首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Size-segregated aerosol vertical profiles in the troposphere are critically important for source attribution, transformation processes, atmospheric stability, and radiative forcing. For the first time, the development of a 6-stage impactor for real-time balloon-borne measurements of size-segregated (cutoff diameter [Dae]: 0.15–5?µm) aerosol mass concentrations in the free troposphere was tested during spring 2016 over Hyderabad, India, is presented. Total aerosol mass concentrations obtained with the 6-stage impactor (MTI) and a co-located optical particle counter (MTOPC) measurements at the surface under ambient conditions agreed to within 15%. The effect of aerosol particle growth on the MTI data are assessed using an urban aerosol particle model by scaling mass concentration of water-soluble (hydrophilic) aerosol particles at ambient relative humidity (RH) to that at RH = 50%. An overall uncertainty of the measurement of the MTI was estimated to be about 19%. The altitude variation of size-segregated mass concentrations of aerosol particles along with thermodynamic variables depicted convectively well-mixed layer extending up to about 4.5?km within which aerosol particles showed two distinct layers, one at ~2?km and another at about 4.5?km. The size-resolved air samples containing aerosol particles collected using the balloon-borne 6-stage impactor will be useful for their chemical characterization and also long-range transport studies.

Copyright © 2019 American Association for Aerosol Research  相似文献   


2.
In this study, nanosized (<100 nm) aerosol particles with high mass concentrations for inhalation tests were generated by a spray-drying technique with combining Coulomb explosion and rapid evaporation of the droplets. Under typical spray-drying conditions, aerosol particles with average diameter of 50–150 nm were prepared from a suspension of NiO nanoparticles with a primary diameter of 15–30 nm. Under the Coulomb explosion method, the sprayed droplets were charged by being mixed with unipolar ions to break up the droplets, which resulted in the generation of smaller aerosol particles with diameters of 15–30 nm and high number concentrations. Under the rapid evaporation method, the droplets were heated immediately after being sprayed to avoid inertial impaction on the flow path due to shrinkage of the droplet, which increased the mass concentration of the aerosol particles. The combination of the Coulomb explosion and rapid evaporation of droplets resulted in the generation of aerosol particles with sizes less than 100 nm and mass concentrations greater than 1 mg/m3; these values are often necessary for inhalation tests. The aerosols generated under the combined method exhibited good long-term stability for inhalation tests. The techniques developed in this study were also applied to other metal oxide nanoparticle materials and to fibrous multiwalled carbon nanotubes.

Copyright 2014 American Association for Aerosol Research  相似文献   


3.
Water-soluble organic matters (WSOMs) play an important role in determining magnitudes of climatic and environmental impacts of organic aerosol particles because of their contributions to hygroscopic growth and cloud formation. These processes are dependent on water solubility as well as distribution of this property in a particle, yet no method has been available to quantify such characteristics. In this study, we developed a theoretical framework to classify WSOM by 1-octanol-water partitioning that has a strong correlation with water solubility. 1-octanol-water partitioning coefficient also has a strong correlation with a traditional solid phase extraction method, facilitating interpretation of data from the technique. The theoretical analysis demonstrated that the distributions of WSOM classified by 1-octanol-water partitioning depend on (1) the volume ratio of 1-octanol and aqueous phases, and (2) extraction steps. The method was tested by using organic aerosol particles generated by smoldering of a mosquito coil, which serves as a surrogate for biomass burning particles. The WSOM extracted from the mosquito coil burning particles was classified by 1-octanol-water partitioning at different volume ratios. These solutions, including both the 1-octanol and aqueous phases, were nebulized to generate particles for measurements using an online aerosol mass spectrometer. The mass spectra indicated that highly oxygenated species tend to be highly soluble, while high molecular weight compounds are less soluble. Linear combinations of these mass spectra allowed the estimation of the mass fractions of WSOM partitioned to 1-octanol and aqueous phases, thereby facilitating the evaluation of the mass fractions of cloud condensation nuclei (CCN) active materials.

© 2017 American Association for Aerosol Research  相似文献   


4.
A novel instrument has been developed for generating highly monodisperse aerosol particles with a geometrical standard deviation of 1.05 or less. This aerosol generator applies a periodic mechanical excitation to a micro-liquid jet obtained by aerodynamic flow-focusing. The jet diameter and its fastest growth wavelength have been optimized as a function of the flow-focusing pressure drop and the liquid flow rate. The monodisperse aerosol generated by this instrument is also charge neutralized with bipolar ions produced by a non-radioactive, corona discharge device. Monodisperse droplet generation in the 15- to 72-μm diameter range from a single 100-micron nozzle has been demonstrated. Both liquid and solid monodisperse particles can be generated from 0.7- to 15-μm diameter by varying solution concentration, liquid flow rate, and excitation frequency. The calculated monodisperse particle diameter agrees well with independent measurements. The operation of this new monodisperse aerosol generator is stable and reliable without nozzle clogging, typical of other aerosol generators at the lower end of the operating particle size ranges.

Copyright © 2016 American Association for Aerosol Research  相似文献   


5.
Single particle levitation is a key tool in the analysis of the physicochemical properties of aerosol particles. Central to these techniques is the ability to determine the size of the confined particle or droplet, usually achieved via optical methods. While some of these methods are extremely accurate, they are not suitable for all applications and sample types, such as solid or optically absorbing particles. In this work, measurements of the radius, mass, and charge of droplets in a linear quadrupole electrodynamic balance (LQ-EDB) are reported. Using the elastic light scattering pattern produced by laser illumination, a method to determine the radius is described, with an accuracy of as good as ±60?nm and a sensitivity to changes on the order of 10?nm. The effect of refractive index on these measurements is explored by application of the technique to simulated data using Mie theory. In addition to radius, the relative and absolute mass and charge of droplets in the trap is measured from the voltage required to stabilize their vertical position. These measurements are facilitated by stacking multiple droplets in the LQ-EDB and solving the force balance equations to yield both parameters. These approaches are demonstrated through measurements of the evaporation of pure ethylene glycol and pure water droplets, the change in density of an aqueous glycerol solution as water evaporates, and the mass and charge of pure glycerol droplets.

Copyright © 2019 American Association for Aerosol Research  相似文献   


6.
Heterogeneous reactions between atmospheric aerosol particles and gaseous pollutants, such as those forming brown carbon (BrC), represent an important mechanism. These reactions alter the particle chemical compositions and aerosol-climate interactions. While most studies assume homogeneous particle compositions, organic coatings can be formed on solid or highly viscous particles due to heterogeneous reactions but the underlying mechanism is relatively less examined. We used electrospray surface-enhanced Raman spectroscopy (ES-SERS) to directly probe the formation of BrC coatings on methylaminium sulfate, nitrate, and chloride particles from heterogeneous reactions with gas-phase glyoxal. To create BrC coatings on particle surfaces, heterogeneous reactions were performed under low relative humidity (RH) conditions (i.e., 10 or 30% RH). The reacted particles fluoresced when irradiated at 532?nm in normal Raman analysis, indirectly suggesting the presence of light-absorbing species in them. Further ES-SERS analyses showed Raman bands of 1,3-dimethylimidazole, one of the major known products of reactions of glyoxal with methylaminium, from all the reacted particles at 30% RH. However, only methylaminium sulfate particles showed the formation of BrC coatings at 10% RH. We speculate that methylaminium sulfate particles may have more surface adsorbed water (SAW) than the other particle samples to initiate the formation of BrC coatings detectable by ES-SERS. The present study highlights the surface sensitivity of ES-SERS as well as the potential importance of SAW in heterogeneous reactions of atmospheric particles with gaseous pollutants.

Copyright © 2019 American Association for Aerosol Research  相似文献   


7.
Accurate refractive index values are required to determine the effects of aerosol particles on direct radiative forcing. Theoretical retrievals using extinction data alone or extinction plus absorption data have been simulated to determine the sensitivity of each retrieval. A range of aerosol types with a range of different refractive indices were considered. The simulations showed that the extinction-only retrieval was not able to accurately or precisely retrieve refractive index values, even for purely scattering compounds, but the addition of a simulated absorption measurement greatly improved the retrieval.

Copyright 2014 American Association for Aerosol Research  相似文献   


8.
The phase-separation of mixed aerosol particles and the resulting morphology plays an important role in determining the interactions of liquid aerosols with their gas-phase environment. We present the application of a new aerosol optical tweezers chamber for delivering a uniformly mixed aerosol flow to the trapped droplet's position for performing experiments that determine the phase-separation and resulting properties of complex mixed droplets. This facilitates stable trapping when adding additional phases through aerosol coagulation, and reproducible measurements of the droplet's equilibration timescale. We demonstrate the trapping of pure organic carbon droplets, which allows us to study the morphology of droplets containing pure hydrocarbon phases to which a second phase is added by coagulation. A series of experiments using simple compounds are presented to establish our ability to use the cavity enhanced Raman spectra to distinguish between homogeneous single-phase, and phase-separated core–shell or partially engulfed morphologies. The core–shell morphology is distinguished by the pattern of the whispering gallery modes (WGMs) in the Raman spectra where the WGMs are influenced by refraction through both phases. A core–shell optimization algorithm was developed to provide a more accurate and detailed analysis of the WGMs than is possible using the homogeneous Mie scattering solution. The unique analytical capabilities of the aerosol optical tweezers provide a new approach for advancing our understanding of the chemical and physical evolution of complex atmospheric particulate matter, and the important environmental impacts of aerosols on atmospheric chemistry, air quality, human health, and climate change.

Copyright © 2016 American Association for Aerosol Research  相似文献   


9.
The effect of relative humidity (RH) on the adhesion of particles colliding with a hard surface was studied for submicron particles of liquid oleic acid, solid ammonium sulfate, and solid polystyrene latex (PSL). For this purpose, a three-arm impactor was designed and constructed. The three arms consisted of one impactor having an uncoated impaction plate (i.e., a rebound arm), one impactor having a viscous-liquid-coated impaction plate (i.e., a capture arm), and one impactor having no impaction plate (i.e., a null arm). The particle number concentrations downstream of each arm were measured by condensation particle counters (CPCs). Data were analyzed to obtain the particle rebound fraction. Use of ambient upstage pressure allowed measurements from 5 to 95% RH at the impaction plate. Particle rebound depended strongly on RH, even for non-hygroscopic PSL particles. The rebound fraction for PSL particles dropped monotonically from nearly unity at 50% RH to 0.4 at 95% RH. For ammonium sulfate, the rebound fraction dropped from nearly unity at 25% RH to 0.5 at 70% RH. The decreased rebound at higher RH was explained by the formation of a water meniscus. The resulting capillary forces inhibited particle detachment. A model, taking into account the impact kinetic energy compared to the contact adhesion energy arising from van der Waals and capillary forces, captured the observations well. The reduced rebound arising from increased adhesion at high RH, independent of particle water content, potentially confounds a recent assumption that non-rebounding atmospheric particles are liquid.

Copyright 2014 American Association for Aerosol Research  相似文献   


10.
The ability of an atmospheric aerosol particle to impact climate by acting as a cloud condensation nucleus (CCN) or an ice nucleus (IN), as well as scatter and absorb solar radiation is determined by its physicochemical properties at the single particle level, specifically size, morphology, and chemical composition. The identification of the secondary species present in individual aerosol particles is important as aging, which leads to the formation of these species, can modify the climate relevant behavior of particles. Raman microspectroscopy has a great deal of promise for identifying secondary species and their mixing with primary components, as it can provide detailed information on functional groups present, morphology, and internal structure. However, as with many other detailed spectroscopic techniques, manual analysis by Raman microspectroscopy can be slow, limiting single particle statistics and the number of samples that can be analyzed. Herein, the application of computer-controlled Raman (CC-Raman) for detailed physicochemical analysis that increases throughput and minimizes user bias is described. CC-Raman applies automated mapping to increase analysis speed allowing for up to 100 particles to be analyzed in an hour. CC-Raman is applied to both laboratory and ambient samples to demonstrate its utility for the analysis of both primary and, most importantly, secondary components (sulfate, nitrate, ammonium, and organic material). Reproducibility and precision are compared to computer controlled-scanning electron microscopy (CCSEM). The greater sample throughput shows the potential for CC-Raman to improve particle statistics and advance our understanding of aerosol particle composition and mixing state, and, thus, climate-relevant properties.

© 2017 American Association for Aerosol Research  相似文献   


11.
Chemical composition and mixing state of aerosols collected over an 11,000 km latitudinal cruise in the Pacific Ocean are reported here as determined by a new application of Raman spectroscopy. The Raman microspectroscopy technique employs a Raman spectrometer coupled to an optical microscope to identify the chemical composition and internal mixing state of single particles. By analyzing multiple particles in a collected ensemble, the degree of external mixing of particles was also determined. To lend context to the Pacific aerosol population sampled, atmospheric aerosol concentration, and the critical supersaturation required for the aerosols to activate as cloud condensation nuclei, and chlorophyll a concentration in the underlying water (a metric for phytoplankton biomass in the ocean) were also obtained. Our results indicate that long chain organic molecules were prevalent in the marine aerosol samples throughout the cruise, including during coastal and open ocean locations, in both hemispheres, and in the seasons of autumn and spring. Long chain organic compounds tended to be present in internal mixtures with other organic and inorganic components. Although variations in the fraction of aerosols activated as CCN were observed, no simple correlation between organics and CCN activation was found. According to our measurements, marine aerosol in the Pacific Ocean may be generally characterized as multicomponent aerosol containing and often dominated by a high organic fraction. Our results suggest that the prevalence of organics and the high degree of internal mixing of aerosol must be accounted for in accurate modeling of the role of marine aerosols in cloud formation and climate.

Copyright 2014 American Association for Aerosol Research  相似文献   


12.
Microfluidics is used in a broad range of applications, from biology and medicine to chemistry and polymer science, because this versatile platform enables rapid and precise repeatability of measurements and experiments on a relatively low-cost laboratory platform. Despite wide-ranging uses, this powerful research platform remains under-utilized by the atmospheric aerosol science community. This review will summarize selected microfluidic concepts and tools with potential applications to aerosol science. Where appropriate, the basic operating conditions and tunable parameters in microfluidics will be compared to typical aerosol experimental methods. Microfluidics offers a number of advantages over larger-scale experiments; for example, the small volumes of sample required for experiments open a number of avenues for sample collection that are accessible to the aerosol community. Filter extraction, spot sampling, and particle-into-liquid sampling techniques could all be used to capture aerosol samples to supply microfluidic measurements and experiments. Microfluidic concepts, such as device geometries for creating emulsions and developments in particle and droplet manipulation techniques will be reviewed, and current and potential microfluidic applications to aerosol science will be discussed.

Copyright © 2018 American Association for Aerosol Research  相似文献   


13.
Dust aerosol and ice crystals are two major types of nonspherical particles in the atmosphere which have significant roles in cloud-aerosol interactions and the radiative budget. The presence of dust and ice often coincide in the atmosphere because dust particles are efficient ice nuclei. The size and composition dependence of the scattering properties of dust and ice are needed to assess their individual contributions to the optical scattering of sunlight. Here we present a new measurement technique used to determine the single particle forward scattering, backscattering, and depolarization ratio (at a wavelength of 680 nm) for representative nonspherical atmospheric particles. The Texas A&M University Continuous Flow Diffusion Chamber (CFDC) was used as an ice crystal generator to produce ice crystals via both homogenous and heterogeneous nucleation mechanisms under well-controlled laboratory conditions. Optical scattering properties of mineral dusts and small ice crystals (0.6 μm to 50 μm optical diameter) were measured by the Droplet Measurement Technologies, Inc. (DMT) Cloud Aerosol Spectrometer with Polarization (CASPOL). Significant differences between the optical properties of single dusts and ice particles of the same size were observed. Differences between the optical signatures of homogeneously and heterogeneously nucleated ice crystals were not statistically significant. Our results suggest that atmospheric ice crystals can be identified and quantified independently from the dust particles on which they form based on analysis of their backscatter and depolarization signals.

Copyright 2014 American Association for Aerosol Research  相似文献   


14.
During occupational exposure studies, the use of conventional scanning mobility particle sizers (SMPS) provides high quality data but may convey transport and application limitations. New instruments aiming to overcome these limitations are being currently developed. The purpose of the present study was to compare the performance of the novel portable NanoScan SMPS TSI 3910 with that of two stationary SMPS instruments and one ultrafine condensation particle counter (UCPC) in a controlled atmosphere and for different particle types and concentrations.

The results show that NanoScan tends to overestimate particle number concentrations with regard to the UCPC, particularly for agglomerated particles (ZnO, spark generated soot and diesel soot particles) with relative differences >20%. The best agreements between the internal reference values and measured number concentrations were obtained when measuring compact and spherical particles (NaCl and DEHS particles). With regard to particle diameter (modal size), results from NanoScan were comparable < [± 20%] to those measured by SMPSs for most of the aerosols measured.

The findings of this study show that mobility particle sizers using unipolar and bipolar charging may be affected differently by particle size, morphologies, particle composition and concentration. While the sizing accuracy of the NanoScan SMPS was mostly within ±25%, it may miscount total particle number concentration by more than 50% (especially for agglomerated particles), thus making it unsuitable for occupational exposure assessments where high degree of accuracy is required (e.g., in tier 3). However, can be a useful instrument to obtain an estimate of the aerosol size distribution in indoor and workplace air, e.g., in tier 2.  相似文献   


15.
A novel water-based condensation particle counter has been developed using a patented, single-flow mixing (SFM) condenser that permits a conventional thermal approach of using a hot saturator followed by a cold condenser to activate and grow particles for counting with an optical detector. A computational fluid dynamics (CFD) model of the internal flow, temperature, and vapor profiles was used to predict the effectiveness of the SFM condenser. Using the results from the CFD model, the counting efficiency was numerically calculated for pure water droplets, and the CPC cut-point (i.e., 50% counting efficiency) was predicted to be 8.3 nm. The experimental performance of the new CPC was measured with differential mobility analyzer-classified, monodisperse particles. The measured cut-points were 8.2 nm for Ag particles and 3.9 nm for NaCl particles. The reduction in the cut-point for NaCl is the result of a compound effect: water uptake by NaCl particles, which increases their size before entering into the growth section (condenser), and the reduction of the equilibrium vapor pressure of water over NaCl-water droplets, resulting in a decrease of the activation diameter.

Copyright © 2016 American Association for Aerosol Research  相似文献   


16.
Single-particle mass spectrometry (SPMS) has been widely used for characterizing the chemical mixing state of ambient aerosol particles. However, processes occurring during particle ablation and ionization can influence the mass spectra produced by these instruments. These effects remain poorly characterized for complex atmospheric particles. During the 2005 Study of Organic Aerosols in Riverside (SOAR), a thermodenuder was used to evaporate the more volatile aerosol species in sequential temperature steps up to 230°C; the residual aerosol particles were sampled by an aerosol mass spectrometer (AMS) and a single-particle aerosol time-of-flight mass spectrometer (ATOFMS). Removal of the secondary species (e.g., ammonium nitrate/sulfate) through heating permitted assessment of the change in ionization patterns as the composition changed for a given particle type. It was observed that a coating of secondary species can reduce the ionization efficiency by changing the degree of laser absorption or particle ablation, which significantly impacted the measured ion peak areas. Nonvolatile aerosol components were used as pseudo-internal standards (or “reference components”) to correct for this LDI effect. Such corrected ATOFMS ion peak areas correlated well with the AMS measurements of the same species up to 142°C. This work demonstrates the potential to accurately relate SPMS peak areas to the mass of specific aerosol components.

Copyright 2014 American Association for Aerosol Research  相似文献   


17.
Experimental studies of particle formation from solution droplets were conducted using a newly developed monodisperse spray drying process. Solutes beclomethasone dipropionate and caffeine were dissolved in ethanol, pressurized hydrofluoroalkane propellant 134a, and mixtures thereof. Solutions were atomized into monodisperse microdroplets using a custom droplet generator installed in a laboratory scale spray dryer, enabling drying and collection of the resulting monodisperse microparticles. The effects of droplet diameter, solution concentration, solvent composition, and drying rate on the physical properties of the dried particles were evaluated. Particle morphology and size were assessed using ultramicroscopy and image analysis of micrographs. Extent of crystallinity and polymorphism were investigated using Raman spectroscopy. The drying temperature was found to have a large effect on the morphology of amorphous beclomethasone dipropionate particles. Particles dried near room temperature were spheroidal to ellipsoidal with prevalent surface concavities and evidence of shell buckling; increasing the drying temperature for fixed droplet size and composition resulted in a transition to more spherical, smooth-surfaced particle morphologies. Crystalline caffeine microparticles were made up of assemblies of multiple crystallites. The measured length and breadth of these crystallites was found to be correlated with the time available for crystal nucleation and growth as calculated using a particle formation model. The results highlight the abilities and limitations of currently available particle formation models in elucidating the relationships between the size, composition, and evaporation rate of drying solution droplets and the physical properties of the resulting particles. The work demonstrates the suitability of monodisperse spray drying as an experimental technique for investigating the fundamentals of particle formation from solution droplets.

© 2018 American Association for Aerosol Research  相似文献   


18.
Wind tunnel experiments examined the coupled effects of relative humidity (RH) and surface and particle properties on aerodynamically induced resuspension. Hydrophilic glass spheres and hydrophobic polyethylene spheres ~20 μm in diameter, with nanoscale surface features, were resuspended from hydrophilic glass, hydrophobic chemical agent resistant coating (CARC), and gold surfaces. Roughness of the glass and gold surfaces was on the nanoscale, whereas CARC surfaces had microscale roughness. Different particle–surface combinations yielded van der Waals interactions that varied by a factor of 4, but these differences had a relatively minor effect on resuspension. Wind tunnel RH was varied between 7% and 78%. Overall, RH affected the resuspension of hydrophilic particles on hydrophilic surfaces most strongly and that of hydrophobic particles on hydrophobic surfaces the least. For each particle–surface combination there was a threshold RH value below which resuspension rates were essentially constant and in good agreement with a dimensionless model of particle resuspension.

Copyright © 2016 American Association for Aerosol Research  相似文献   


19.
A key atmospheric process that is studied in laboratory chambers is the oxidation of volatile organic compounds to form low volatility products that condense on existing atmospheric particles (or nucleate) to form organic aerosol, so-called secondary organic aerosol. The laboratory chamber operates as a chemical reactor, in which a number of chemical and physical processes take place: gas-phase chemistry, transport of vapor oxidation products to suspended particles followed by uptake into the particles, deposition of vapors on the walls of the chamber, deposition of particles on the walls of the chamber, and coagulation of suspended particles. Understanding the complex interplay among these simultaneous physicochemical processes is necessary in order to interpret the results of chamber experiments. Here we develop and utilize a comprehensive computational model for dynamics of vapors and particles in a laboratory chamber and analyze chamber behavior over a range of physicochemical conditions.

Copyright © 2018 American Association for Aerosol Research  相似文献   


20.
Particles deposited on a free-fall charged droplet were experimentally studied. A droplet, charged under 40% Rayleigh limit, fell through the particle chamber to capture particles by electrostatic attractions. The velocity of the droplet was smaller than 2.1 m/s. The particle-laden droplet eventually spread on a glass slide, which was further analyzed using optical microscope. It was found that the equivalent number of particles captured by the charged droplet were larger than that of uncharged ones by one order of magnitude at least. Remarkably, particles on the charged droplet agglomerated into a large cluster, which indicates that the agglomerated cluster can be actively precipitated due to the gravity force if the droplet completely evaporates. The front side of the charged droplet was the predominant region to capture the particles. However, the actual area of capture was smaller than hemispheric surface.

Copyright © 2017 American Association for Aerosol Research  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号