首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The tropical hardwood sawdust of Tectona grandis L.f. from the wood processing industry was extracted and tested for anti-wood rot activity. Tectona grandis extract inhibited the brown rot fungi Gloeophyllum sepiarium, Gloeophyllum trabeum, Piptoporus betulinus and Serpula lacrymans, and the white rot fungi Bjerkandera adusta, Merulius tremellosus, and Phlebia brevispora. Centrifugal partition chromatography was used to separate these compounds using n-hexane-MeOH-H2O (50:47.5:2.5) as a solvent system. The compounds deoxylapachol, tectoquinone, 2-hydroxymethylanthraquinone, 3′-OH-deoxyisolapachol (2-[(1E)-3-hydroxy-3-methylbut-1-enyl]naphthoquinone), hemitectol (2,2-dimethyl-2H-benzo[h]chromen-6-ol), and tectol were isolated from Tectona grandis sawdust CHCl3-MeOH (1:1) extract. Deoxylapachol inhibited the brown rot fungi Gloeophyllum sepiarium CBS 353.74 and Gloeophyllum trabeum CBS 318.50 and the white rot fungi Merulius tremellosus CBS 280.73 and Phlebia brevispora CBS 509.92. Hemitectol together with tectol showed a high percentage of cellulase inhibition followed by 3′-OH-deoxyisolapachol and deoxylapachol.  相似文献   

2.
Abstract

In this study, polystyrene modified Scots pine (Pinus sylvestris L.) wood was investigated upon artificial weathering, decay resistance, dimensional stability and water uptake properties. Polystyrene modification was carried out on pretreated wood by immersion of wood into styrene monomer and further polymerization. The resistance of modified wood against cycles of UV and water exposures was examined by artificial weathering test for 672?hours, and decay resistance was evaluated by attacks of Coniophora puteana and Trametes versicolor on the samples. During the artificial weathering, color and surface roughness of the samples, and macroscopic changes were determined periodically. Changes in the surface chemistry and morphology of the weathered samples were investigated by ATR-FTIR and SEM, respectively. It was proven that polystyrene effectively protected pine samples from both fungi even after leaching procedure, but it was more effective in preventing C. puteana attacks than T. versicolor attacks. As a result of artificial weathering, the surface of all samples was darkened. However, changes in color and roughness as well as crack formations of the modified sample surfaces were found less than those of the untreated samples. Polystyrene also provided considerable improvement on dimensional stability, as well as water repellence of wood.  相似文献   

3.
In this study, two colloidal dispersions of pure amorphous silicon dioxide particles, acetylated, and heat‐treated samples were tested for a possible application as a wood protection agents. The silicon, acetylated, and heat‐treated samples were exposed to an accelerated weathering experiment, and their dimensional stability was assessed. The weathering experiment comprised cycles of 2 h UV‐light irradiation followed by water spray for 18 min. The surface changes of the weathered samples were characterized by FT‐IR spectroscopy and color measurements. According to results, the silicon treatments showed lower color changes than untreated ones. However, acetylated and heat‐treated samples provided the lowest color changes. The resistance of the silicon, acetylated, and heat‐treated wood to decay was studied by means of brown and white rot fungi in laboratory decay tests. Decay test results revealed that acetylated and heat‐treated wood samples showed better decay resistance against P. placenta and C. versicolor than silicon treatments. Samples modified with silicon were exposed in above ground standard lap‐joint test in Ultuna, Sweden. The dispersions of pure amorphous silicon dioxide impregnated in wood did not significantly influence its hygroscopic and dimensional behavior. However, the silicon treatment reduced the color changes caused by weathering. The silicon impregnated samples showed a weak fungal discoloration similar to that of chromated copper arsenate impregnated controls in above ground standard lap‐joint test. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4506–4513, 2006  相似文献   

4.
This study investigated the associations between wood species and fungal resistance, as well as the effects of fungal decay on the properties of mechanical, chemical, and water absorption of wood polypropylene composites (WPCs) filled with white poplar, moso-bamboo, Chinese fir, Ramin, white pine, and rubber wood. Experimental results on weight losses and surface morphology both showed that fungal resistance of WPCs varied significantly with wood fiber species. Chinese fir and rubber wood filled composites separately presented the most and least durability against Coriolus versicolor (white rot) and Poria placenta (brown rot). In addition, fungal decay produced great differences in the properties of mechanical, chemical, and water absorptions between non-decayed and decayed composites. The decayed composites showed lower MOR, tensile strength, and impact strength, as well as higher MOE and water absorptions compared with non-decayed samples. These findings suggest that fungal decay could bring out dramatic influences on various properties of WPCs.  相似文献   

5.
Heat treatment at relatively high temperatures (from 150 to 260°C) is an effective method to improve the durability of wood. This study investigates the reasons for the decay resistance of heat‐treated and nontreated wood with respect to the polymeric structural constituents by solid‐state cross‐polarization/magic‐angle spinning (CP–MAS) 13C‐NMR analysis before and after exposure to brown rot and white rot fungi. An industrial two‐stage heat‐treatment method under relatively mild conditions (<200°C) has been used to treat the samples. Brown rot fungi attack polymeric carbohydrates of nontreated Scots pine sapwood at C4, resulting in cleavage and eventually depolymerization of cellulose and hemicelluloses. The attack at the carbohydrate C6, which has never been observed before, is remarkable because the C6 ? CH2OH group has no covalent structural function but acts in fixing the three‐dimensional carbohydrate configuration just by secondary forces. The ? CH2OH group carries ? OH, which forms some of the strongest hydrogen bonds in the structure of the crystalline native cellulose. It is suggested that the fungus tries to cleave this group to open the cellulose crystalline structure into an amorphous structure to decrease its water repellency to facilitate enzymatic cellulose degradation. Considerable degradation of the hemicelluloses occurs during brown rot fungal exposure, whereas in general the attack on lignin is rather limited, being mainly demethoxylation. However, Gloeophyllum trabeum is an active brown rot fungus in the (partial) degradation of lignin because there is some indication of ring opening of the aromatic ring of lignin during fungal exposure. Aromatic ring opening has also been observed after exposure to Coriolus versicolor, a white rot fungus. The demethoxylation of lignin and some attack on wood carbohydrates are also characteristic of the attack of this white rot fungus. The CP–MAS 13C‐NMR spectra of heat‐treated Norway spruce reveal similarities but also clear differences after fungal exposure in comparison with nontreated Scots pine sapwood. Brown rot fungi seem to have a preference to attack the carbohydrates of heat‐treated wood at C4 and especially C1, cleaving the skeleton of cellulose and glucomannans. In untreated Scots pine sapwood, this attack mainly occurs at C4, the nonreducing end of the glucose unit. An attack on the out‐of‐the‐ring alcoholic group ? CH2OH of the carbohydrates of heat‐treated Norway spruce is less obvious than that in untreated Scots pine. The attack on C3/C5 of the carbohydrates is remarkable, indicating ring opening of the glucose units, which has not been observed in nontreated Scots pine sapwood. Lignin degradation is limited to demethoxylation, and low or no aromatic ring opening is observed, even after C. versicolor exposure. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2639–2649, 2006  相似文献   

6.
In this present research, several kinds of selected tropical light hardwoods were chemically modified with benzene diazonium salt to improve their physico‐mechanical and decay resistance properties. Benzene diazonium salt underwent a coupling reaction with wood which was confirmed through fourier transform infrared spectroscopic analysis. The compressive modulus of the treated wood increased, whereas modulus of rupture was shown to decrease on treatment. Water absorption was also found to decrease considerably after modification. The modified wood samples had higher hardness (Shore D) value compared to that of the control ones. The wood was exposed to two types of fungi; white‐rot (Polyporus versicolor) and brown‐rot (Postia placenta), for 12 weeks and then decay was assessed through weight loss percentage (%). A significant improvement was found in the modified wood compared to the control wood. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
In this article, the effects of bio‐oil and epoxidized linseed oil (ELO) on water absorption, tangential swelling, decay and insect resistance, thermo‐gravimetric analysis, and mechanical properties of treated wood samples were studied. The bio‐oil used in this article was by‐product of ThermoWood thermal modification process. Linseed oil and hydrogen peroxide were used to prepare ELO. The results indicated that the samples treated with bio‐oil had lower water absorption than that of the control group. The second treatment with ELO significantly reduced further the water absorption. The decay resistance of treated wood samples with 20% of bio‐oil against brown (Coniophora puteana) and white rot (Trametes versicolor) fungi was very high. According to the insect test results, increasing bio‐oil concentration from 10% to 20% significantly decreased surviving rate of Hylotrupes bajulus. Thermo‐gravimetric analysis showed that all treated samples had higher initial deterioration temperature than that of the control group. Regarding the wood strength, the impregnated bio‐oil generally reduced the mechanical properties of wood except modulus of elasticity (MOE). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1562–1569, 2013  相似文献   

8.
Abstract

The lignin degradation by Flavodon flavus (Klotzsch) Ryv. and Schizophyllum commune Fr. on Mangifera indica and Syzygium cumini wood, changes in the chemical composition of the degraded wood, and production of extra-cellular lignocellulolytic enzymes were analyzed. White rot fungi F. flavus and S. commune selectively degraded the lignin of S. cumini rather than the holocellulose component, whereas simultaneous degradation of lignin occurred in the case of M. indica. After 90 days of pretreatment with F. flavus, total weight loss was 29% and loss in lignin content was 25.7% in M. indica wood. However, 8% loss of holocellulose was caused by S. commune in S. cumini wood. Extracellular enzymes from F. flavus such as ligninase and cellulase showed higher activity in degradation of M. indica wood than in S. cumini wood. Weight loss and changes in chemical composition of M. indica and S. cumini woods showed good correlation with enzyme activity in lignocellulose degradation. Woods of S. cumini showed resistance to the white rot fungi could be due to the presence of polyphenols.  相似文献   

9.
Extensive research efforts have been devoted to describing yeast alcohol oxidase (AO) and its promoter region, which is vastly applied in studies of heterologous gene expression. However, little is known about basidiomycetous AO and its physiological role in wood degradation. This review describes several alcohol oxidases from both white and brown rot fungi, highlighting their physicochemical and kinetic properties. Moreover, the review presents a detailed analysis of available AO-encoding gene promoter regions in basidiomycetous fungi with a discussion of the manipulations of culture conditions in relation to the modification of alcohol oxidase gene expression and changes in enzyme production. The analysis of reactions catalyzed by lignin-modifying enzymes (LME) and certain lignin auxiliary enzymes (LDA) elucidated the possible involvement of alcohol oxidase in the degradation of derivatives of this polymer. Combined data on lignin degradation pathways suggest that basidiomycetous AO is important in secondary reactions during lignin decomposition by wood degrading fungi. With numerous alcoholic substrates, the enzyme is probably engaged in a variety of catalytic reactions leading to the detoxification of compounds produced in lignin degradation processes and their utilization as a carbon source by fungal mycelium.  相似文献   

10.
Organosolv pulping of fungally pretreated samples of Pinus radiata was evaluated. A screening study using five white‐rot fungi indicated that Ceriporiopsis subvermisopora and Punctularia artropurpurascens were the most selective ones for lignin degradation. These fungi were further cultured in bioreactors containing 2.5 kg of wood chips. Fungally‐pretreated samples were delignified by formic acid/acetone (7:3) at 150 °C. Pulping kinetics and strength properties of the resulting unbleached pulps were evaluated. Delignification rates and xylan solubilization rates were higher for the decayed samples than for the undecayed control, except for the sample biotreated with P artropurpurascens for 30 days. C subvermispora proved appropriate for treating the wood samples before organosolv pulping, since pretreatment with this fungus resulted in faster wood delignification and pulps with lower residual lignin. Increases in tensile index ranging from 3% to 22% were observed for most pulps prepared from biotreated samples, independently both of the fungal species used in the pretreatment and of the extent of the wood biodegradation expressed as wood weight loss. However, tear and burst indexes and brightness were lower than or similar to those of pulps prepared from the undecayed control. © 2000 Society of Chemical Industry  相似文献   

11.
In this research, two different types of commercial tannins, namely a hydrolysable tannin (chestnut) and a condensed flavonoid tannin (mimosa), were used to prepare two types of soy-based (soy flour (SF) and soy protein isolate) adhesives for making plywood. Thermogravimetric properties (TGA) and its derivative as function of temperature (DTG) of different soy-based adhesive were measured in the range 40°C–300°C. Thermomechanical analysis (TMA) from 25°C to 250°C was done for the different resin formulations. Duplicate three-ply laboratory plywood panels were prepared by adding 300 g/m2 of the adhesives’ total resin solid content composed of SF or isolated soy protein (ISP), urea, chestnut, and mimosa tannin extracts with hexamine as hardener. Based on the results obtained, tannins can improve SF adhesion properties. The TMA showed that chestnut tannin extract appeared to react well with SF, while mimosa tannin extract appeared to react well with ISP. Matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry also showed that among other reactions, the soy protein amino acids reacted with the tannins. Furthermore, delamination and shear strength test results showed the good water resistance of plywood bonded with soy-based tannin modified adhesive.  相似文献   

12.
This work aimed to examine flame retardancy, antifungal performance and physical–mechanical properties for silane‐treated wood–polymer composites (WPCs) containing zinc borate (ZnB). ZnB with content from 0.0 to 7.0 wt% was added to WPCs, and silane‐treated wood contents were varied. The polymers used were poly(vinyl chloride) (PVC) and high‐density polyethylene (HDPE). The decay test was performed according to the European standard EN 113. Loweporus sp., a white‐rot fungus, was used for antifungal performance evaluation. Antifungal performance was observed to decrease with wood content. Incorporation of ZnB at 1.0 wt% significantly increased the antifungal performance of WPCs. ZnB content of greater than 1.0 wt% lowered the antifungal properties of WPCs. The results suggested that the wood/PVC composite exhibited better antifungal performance than the wood/HDPE composite. The addition of wood flour to PVC and HDPE decreased flame retardancy, whereas the incorporation of ZnB retained the flame retardancy. ZnB was found to be more appropriate for wood/PVC than wood/HDPE as a result of hydrogen chloride generated from the dehydrochlorination reaction of PVC. The results indicated that the addition of ZnB did not affect the physical‐mechanical properties of neat polymers and the composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
朱翔  刘大超  卢永 《广东化工》2012,39(1):39-40,56
采用木屑固定化白腐真菌并对焦化废水进行处理,有机物降解的宏观动力学符合一级反应动力学,动力学模式为lnS=-Kt+lnS0。在15~30℃范围内反应速率常数K随温度升高不断增大,在30~40℃范围内反应速率常数K随温度升高不断降低,在30℃时反应速率常数最大K=0.0265 h-1。  相似文献   

14.
Abstract

In this study antifungal activities of essential oils from wood and leaf and their constituents of Cunninghamia konishii against four wood decay fungi and six plant pathogenic fungi were investigated. GC and GC-MS analyses show that the major compounds of wood essential oil were cedrol and α-pinene, while those of leaf essential oil were α-pinene and p-cymene. Antifungal tests demonstrated the wood oil from C. konishii used against Trametes versicolor, Lenzites betulina, Laetiporus sulphureus, and Gloeophyllum trabeum and leaf oil from C. konishii used against L. sulphureus had strong antifungal activities. Moreover, wood oil used against Rhizoctonia solani, Fusarium solani, Pestalotiopsis funereal, and Ganoderma australe also had strong antifungal activities. Among the seven constituents of wood oil, cedrol displayed the best antifungal properties, indicating that it may be used as potential antifungal agents for the control of fungal diseases in plants.  相似文献   

15.
Several white rot fungi were evaluated for their ability to decolorize olive mill waste-waters (OMW). Among these, Phanerochaete chrysosporium showed the highest potential for the biological depollution of OMW. Approximately 65% of the color and 73% of the chemical oxygen demand (COD) were removed by P. chrysosporium strain HD. Phlebia radiata, Dichomitus squalens, Polyporus frondosus and Coriolus versicolor could also decolorize the OMW but to a lesser extent. The different abilities of these white rot fungi to decolorize OMW correlated with their rates of depolymerization of high molecular weight aromatics and the degradation of the low molecular weight aromatic compounds. Fourteen strains of P. chrysosporium were compared on the basis of their lignin peroxidase (LiP) production, OMW decolorization and residual material dry weight. High lignin peroxidase producer strains, such as strains HD and BKM-F-1767, showed the highest rates of OMW decolorization, P. chrysosporium strains 79–36 and FP 104297 (low LiP producer strains) did not exhibit any decolorization activity.  相似文献   

16.
Polymeric nanoparticles containing the fungicides tebuconazole and chlorothalonil were prepared by a simple, surfactant‐free method and found to have significantly smaller median particle diameters and more stable aqueous suspensions than their surfactant‐stabilized counterparts. These more stable suspensions were delivered into southern yellow pine and birch wood with greater efficiency than the equivalent surfactant‐stabilized nanoparticle suspensions. We found that the suspensions protected the treated wood against fungal attack by Gloeophyllum trabeum, a common brown rot wood decay fungus, and Trametes versicolor, a common white rot wood decay fungus, at low tebuconazole and chlorothalonil contents in the wood. Southern pine lost 5% or less of its mass after 55 days of exposure to G. trabeum when the tebuconazole or chlorothalonil content in the wood was only 0.4 kg/m3, while a tebuconazole or chlorothalonil content of 0.8 kg/m3 in birch wood was sufficient to bring its mass loss to less than 5% after 55 days of exposure to T. versicolor. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 615–621, 2002  相似文献   

17.
固定化白腐菌对造纸废水的生物降解研究   总被引:6,自引:0,他引:6  
就具有较强木质素降解能力的白腐菌对造纸废水的降解效果及条件进行了初步研究.分别采用固定化白腐菌和悬浮态白腐菌在不同接种量下对造纸废水进行降解,对降解过程中的白腐菌生长量、pH、COD、木质素含量等废水降解指标进行测定.结果显示两种不同状态下的白腐菌均能降解造纸废水,但它们的降解程度不同.其中固定化白腐菌降解木质素效果较好,且呈现较明显规律,说明固定化的白腐菌较悬浮态的白腐菌更具有降解造纸废水的潜在能力.  相似文献   

18.
The aim of this study was to investigate the effect of heat‐treated lignocellulosic filler on the surface characteristics and decay resistance of the wood flour/styrene maleic anhydride (SMA) composites. In this study, heat treatment was conducted at 212°C for 8 hours. Test specimens were prepared by injection molding at 220°C. Weathering tests were performed by cycles of UV‐light irradiation for 8 hours, water spray for 15 minutes, and then conditioning for 3.45 hours in an accelerated weathering test cycle chamber. Heat‐treated wood flour/SMA composites were evaluated for color changes, and attenuated total reflectance Fourier transform infrared (FTIR) spectroscopy was used to analyze chemical changes on the sample surfaces. The wood decay tests were performed of white rot fungus, Trametes versicolor (L.: Fr.) Pilat was based on mini‐block specimens on 48% malt extract agar in petri dishes. The study showed that color changes occurred when heat‐treated filler rate is increased in this material. Therefore, materials in 10% filler rate show lower color changes than other variation. As a result of the FTIR analysis, the addition of wood filler into the SMA causes changes in the chemical structure. In addition, the increase in wood filler reduced the resistance to weathering. Decay results showed that thermally modified wood has lower mass loss caused by fungal attack than untreated wood material. The weight loss decreases with the increase in wood flour rate expect 10%T and 10%UT in all composites.  相似文献   

19.
Abstract

Pretreatment of pinus Radiata logs with the white‐rot fungi Ceriporiopsis sp (9C), Pleurotus sp (9P), and Phlebia sp (24P), under field conditions was studied. The lignin content was evaluated by gravimetric techniques (Klason lignin), FTIR spectroscopy, and gas chromatography. A control sample and samples treated for 90 days with each of the fungi were analyzed. The ability of the fungi to degrade the lignin was in the order Phlebia sp (24P) > Ceriporiopsis sp (9C) > Pleurotus sp (9P).  相似文献   

20.
Tannins extracted from the green bark of each of two Chinese, Japanese, and American chestnut trees were assayed in a protein-binding test. Four levels of tannins were added to a buffered, minimal growth medium, and a standard, virulent strain of the chestnut blight fungus was grown. There were only slight differences in protein binding between the extracts from different species. Fungal growth was better with tannin than without, but there was no difference between species extracts in their ability to improve fungal growth rate. There was also no inhibition of blight fungus growth by any of the tree tannins, so tannin toxicity is not the reason for Asian chestnut tree resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号