首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce a new electrical measurement technique for aerosol detection, based on pulsed unipolar charging followed by a non-contact measurement of the rate of change of the aerosol space charge in a Faraday cage. This technique, which we call “aerosol measurement with induced currents,” has some advantages compared to the traditional method of collecting the charged particles on either an electrode or with a particle filter. We describe the method and illustrate it with a simple and miniature (shirt-pocket-sized) instrument to measure lung-deposited surface area. Aerosol measurement by induced currents can also be applied to more complex devices.

Copyright 2014 American Association for Aerosol Research  相似文献   


2.
Flames generate a large amount of chemically and thermally ionized species, which are involved in the growth dynamics of particles formed in flames. However, existing models predicting particle formation and growth do not consider particle charging, which may lead to bias in the calculated size distribution of particles. In this study, Fuchs' charging theory was coupled with a monodisperse particle growth model to study the simultaneous charging and coagulation of nanoparticles during combustion. In order to quantify the charging characteristics of nanoparticles, a high-resolution DMA was used to measure the mobilities of ions generated from a premixed flat flame operated at various conditions. The effect of temperature on ion–particle and particle–particle combination coefficients was further examined. The proposed model showed that the influence of charging on particle growth dynamics was more prominent when the ion concentration was comparable to or higher than the particle concentrations, a condition that may be encountered in flame synthesis and solid fuel-burning. Simulated results also showed that unipolar ion environments strongly suppressed the coagulation of particles. In the end, a simplified analysis of the relative importance of particle charging and coagulation was proposed by comparing the characteristic time scales of these two mechanisms.

© 2017 American Association for Aerosol Research  相似文献   


3.
In this article, a proof of concept of a new measurement instrument, differential diffusion analyzer (DDA), is established. The DDA enables the measurement of the size distribution of sub-10 nm aerosol particles, and it can also be used as a size classifier to separate a certain particle size from a size distribution for subsequent analysis. The developed technique is based on the diffusion separation of different size particles. Thus, the main advantage of the DDA compared to other methods is that particle charging is not required. Simulated and experimentally measured transmission efficiencies show that the diffusion-based differential size classification is a feasible concept, and moreover, shows that particle size is inversely proportional to the square root of the total flow rate.

Copyright © 2017 American Association for Aerosol Research  相似文献   


4.
The Pegasor PPS-M sensor is an electrical aerosol sensor based on diffusion charging and current measurement without particle collection. In this study, the role and effect of each component in the instrument is discussed shortly and the results from a thorough calibration measurements are presented. A comprehensive response model for the operation of the PPS-M sensor was developed based on the calibration results and computational fluid dynamics (CFD) modeling results. The obtained response model, covering the effects of the particle charger, the mobility analyzer, and both diffusion and inertial losses, was tested in the laboratory measurements with polydisperse test aerosols, where a good correlation between the model and the measured results was found.

Copyright 2014 American Association for Aerosol Research  相似文献   


5.
We introduce a particle charge-size distribution measurement method using a differential mobility analyzer and an electrical low pressure impactor in tandem configuration. The main advantage of this type of measurement is that it is suitable for a wide range of particle sizes, from approximately 30 nm up to a micrometer, and for high charge levels, which have been problematic for previously used methods. The developed charge measurement method requires information on the particle effective density, and the accuracy of the measurement is dependent on how well the particle effective density is known or estimated. We introduce the measurement and calculation procedures and test these in laboratory conditions. The developed method has been tested using narrow and wide particle size distributions of a known density and well-defined particle charging states. The particles have been produced by the Singly Charged Aerosol Reference (SCAR) and an atomizer and charged with the previously well-characterized unipolar diffusion chargers used in the Nanoparticle Surface Area Monitor (NSAM) and in the Electrical Low Pressure Impactor (ELPI+). The acquired charge-size distributions are in good agreement with the reference values in terms of the median charge levels and widths of the charge distributions.

Copyright © 2017 American Association for Aerosol Research  相似文献   


6.
Many well-established models can be applied to calculate the filtration efficiencies. In these models the filtration velocity and challenging particle size are assumed to be known accurately. However, in realistic filtration tests, the filtration velocity has profiles dependent on the filter holder geometry and experimental conditions; the challenging particles have size distributions dependent on the instruments and operation conditions. These factors can potentially affect the measured filtration efficiency and lead to discrepancies with the models.

This study aims to develop an integrative model to predict the filtration efficiencies in realistic tests by incorporating the effects of the filtration velocity profile and challenging particle size distribution classified by a differential mobility analyzer (DMA) into the existing filtration models. Face velocity profile is modeled with fluid mechanics simulations; the initial generated particle size distribution, the particle charging status and the DMA transfer function are modeled to obtain the challenging particle size distribution. These results are then fed into the filtration models. Simulated results are compared with experimental ones to verify the model accuracy. This model can be used to reduce filtration test artifacts and to improve the experimental procedure.

The results reveal that the face velocity upstream the filter exhibits high degree of homogeneity not affecting the filtration efficiency if the filter pressure drop is not very low. The generated particle size distribution and the DMA selection size window could influence the challenging particle size distribution and therefore the measured filtration efficiency.

Copyright © 2017 American Association for Aerosol Research  相似文献   


7.
During occupational exposure studies, the use of conventional scanning mobility particle sizers (SMPS) provides high quality data but may convey transport and application limitations. New instruments aiming to overcome these limitations are being currently developed. The purpose of the present study was to compare the performance of the novel portable NanoScan SMPS TSI 3910 with that of two stationary SMPS instruments and one ultrafine condensation particle counter (UCPC) in a controlled atmosphere and for different particle types and concentrations.

The results show that NanoScan tends to overestimate particle number concentrations with regard to the UCPC, particularly for agglomerated particles (ZnO, spark generated soot and diesel soot particles) with relative differences >20%. The best agreements between the internal reference values and measured number concentrations were obtained when measuring compact and spherical particles (NaCl and DEHS particles). With regard to particle diameter (modal size), results from NanoScan were comparable < [± 20%] to those measured by SMPSs for most of the aerosols measured.

The findings of this study show that mobility particle sizers using unipolar and bipolar charging may be affected differently by particle size, morphologies, particle composition and concentration. While the sizing accuracy of the NanoScan SMPS was mostly within ±25%, it may miscount total particle number concentration by more than 50% (especially for agglomerated particles), thus making it unsuitable for occupational exposure assessments where high degree of accuracy is required (e.g., in tier 3). However, can be a useful instrument to obtain an estimate of the aerosol size distribution in indoor and workplace air, e.g., in tier 2.  相似文献   


8.
Accurate measurement of particle size distribution using electrical-mobility techniques requires knowledge of the charging state of the sampled particles. A consistent particle charge distribution is possible with bipolar diffusion chargers operated under steady-state condition. Theoretical steady-state charge distributions for bipolar charging are well established but recent studies have shown that the performance of particle chargers is a strong function of particle size, particle concentration, ion source, and charger operating conditions. Most of these studies have focused on particles smaller than 100 nm and the applicability of these results for particles larger than 100 nm must be investigated. In this study, experimentally obtained singly-charged and doubly-charged fractions are compared against theoretical predictions for particles in the size range of 100 to 900 nm. The experimental results show that the commercial soft X-ray charger performs as theoretically-predicted over the range of conditions studied while the performance of other commonly used radioactive chargers (85Kr and 210Po) are dependent on source strengths, flowrates, particle charge polarities, and particle sizes. From measurements of particle residence times and ion concentrations in different test bipolar chargers, prior observations of flowrate-dependent charging fractions can be explained. Additionally, the results from this study are used to determine an acceptable time period for usage of the commercial TSI 3077A 85Kr chargers for steady-state charging as a function of flowrate.

Copyright © 2018 American Association for Aerosol Research  相似文献   


9.
For a nonspherical particle, a standard differential mobility analyzer (DMA) measurement yields a mobility-equivalent spherical diameter, but provides no information about the degree of sphericity. However, given that the electrical mobility for nonspheres is orientation-dependent, and that orientation can be manipulated using electric fields of varying strength, one can, in principle, extract some type of shape information through a systematic measurement of mobility as a function of particle orientation. Here, we describe the development of a pulsed-field differential mobility analyzer (PFDMA) which enables one to change the peak E-field experienced by the particle to induce orientation, while still maintaining the same time-averaged field strength as a standard DMA experiment. The instrument is validated with polystyrene latex (PSL) spheres with accurately known size, and gold rods with dimensions accurately determined by transmission electron microscopy (TEM). We demonstrate how the instrument can be used for particle separation and extraction of shape information. In particular, we show how one can extract both length and diameter information for rod-like particles. This generic approach can be used to obtain dynamic shape factors or other multivariate dimensional information (e.g., length and diameter).

Copyright 2014 American Association for Aerosol Research  相似文献   


10.
The estimation of air velocity distributions and particle trajectories is inevitable to analyse the mechanism of classification, but the direct measurement of il is extremely difficult.

The authors, here report three dimensional air velocity distributions within the inside drum of model Sturtevant-type air classifier measured by a spherical five-holed Pitot-lube, and also two dimensional particle ejecting velocities on a model distributor determined by photography.

Using those results, the cut size calculated from particle trajectories in the classifier is compared with the experimental results and theoretical values.  相似文献   


11.
Smoothed Particle Hydrodynamics was employed in the present two-dimensional simulations, thus the algorithms implemented for both continuous and dispersed phase share a common Lagrangian stencil. The results were benchmarked against those produced in earlier investigations of particle deposition resulting from the flow around a stationary square obstacle. The proposed numerical procedure also facilitates the investigation of the fundamental physics governing the transport of resuspended particles in the wake of a moving operator, e.g., inside cleanroom facilities. Aiming to illustrate this capability, the dispersion of neutrally suspended particles behind an impulsively-started plate has been numerically simulated. Two distinct particle dispersion patterns, characterized by different Reynolds numbers, have been obtained for this problem. Altogether the results have demonstrated the accuracy of the method and associated advantages for multiphase flow studies, especially in cases involving moving boundaries due to its mesh-free nature.

Copyright © 2016 American Association for Aerosol Research  相似文献   


12.
We describe the performance of a drift tube-ion mobility spectrometry (DT-IMS) instrument for the measurement of aerosol particles. In DT-IMS, the electrical mobility of a measured particle is inferred directly from the time required for the particle to traverse a drift region, with motion driven by an electrostatic field. Electrical mobility distributions are hence linked to arrival time distributions (ATDs) for particles reaching a detector downstream of the drift region. The developed instrument addresses two obstacles that have limited DT-IMS use for aerosol measurement previously: (1) conventional drift tubes cannot efficiently sample charged particles at ground potential and (2) the sensitivities of commonly used Faraday plate detectors are too low for most aerosols. Obstacle (1) is circumvented by creating a “sample volume” of aerosol for measurement, defined by the streamlines of fluid flow. Obstacle (2) is bypassed by interfacing the end of the drift region with a condensation particle counter. The DT-IMS prototype shows high linearity for arrival time versus inverse electrical mobility (R 2 > 0.99) over the size range tested (2.2–11.1 nm), and measurements compare well with both analytical and numerical models of device performance. A dimensionless calibration curve linking drift time to inverse electrical mobility is developed. In less than 5 s, it is possible to measure 11.1 nm particles, while 2.2 nm particles are analyzable on a subsecond scale. The transmission efficiency is found to be dependent upon electrostatic deposition for short drift times and upon advective losses for long drift times.

Copyright 2014 American Association for Aerosol Research  相似文献   


13.
We study the effects of electric field strength on the mobility of soot-like fractal aggregates (fractal dimension of 1.78). The probability distribution for the particle orientation is governed by the ratio of the interaction energy between the electric field and the induced dipole in the particle to the energy associated with Brownian forces in the surrounding medium. We use our extended Kirkwood–Riseman method to calculate the friction tensor for aggregates of up to 2000 spheres, with primary sphere sizes in the transition and near-free molecule regimes. Our results for electrical mobility versus field strength are in good agreement with published experimental data for soot, which show an increase in mobility on the order of 8% from random to aligned orientations. Our calculations show that particles become aligned at decreasing field strength as particle size increases because particle polarizability increases with volume. Large aggregates are at least partially aligned at field strengths below 1000 V/cm, though a small change in mobility means that alignment is not an issue in many practical applications. However, improved differential mobility analyzers would be required to take advantage of small changes in mobility to provide shape characterization.

Copyright © 2018 American Association for Aerosol Research  相似文献   


14.
Experimental studies were carried out on the removal of five species of aromatic nitro hydrocarbons by ozonation. Ultraviolet spectrograms with distinct absorption peaks were plotted for each of them. It has been found that the absorbances of aqueous solutions containing the single compounds mentioned above increase to different extents at the wave lengths ranging from 200 to 230 nanometers with increase of ozone dosages. This is ascribed to the nitrite ions splitting out of the benzene rings and being further oxidized to nitrate ions by ozonation.

It has been indicated that the removal of the five species of aromatic nitro compounds by ozonation can well be expressed mathematically by first order reaction equations. Besides, the reaction constants and half-life periods for various species of the tested nitro compounds were calculated at different temperatures and pH.

An ozonation effect index (OI) was developed in the study to express the degree of degradation of substrates by ozonation, by means of which the five aromatic nitro hydrocarbons were compared with each other and finally ranked in the following order from greatest to smallest degrees of degradation:

p-nitroaniline > nitrobenzene > p-dinitrobenzene > p-nitrotoluene > m-dinitrobenzene

It has also found that the CODm/M ratio increases with ozone doses. This means that some easily degradable intermediates are produced, and increase in concentration with increase of ozone dose in the ozonation process.

The mechanisms of removing the five aromatic nitro hydrocarbons are discussed from the viewpoint of orienting effects of substituent groups on the aromatic rings.  相似文献   


15.
The existing theoretical response spectra of APM-3600 agree well with the experimental data for submicron particles larger than 100 nm in the electrical mobility diameter but not for nanoparticles. In this study, a 2-D numerical model was developed to predict the transfer function and response spectra of APM-3600 based on the detailed simulation of flow and particle concentration fields. It was found that recirculation flows existed in the annular classifying region and APM's inlet and outlet regions, which led to enhanced convection-diffusion loss of nanoparticles compared to that without considering flow recirculation. As a result, the APM underestimates the mass of naonoparticles due to the shift of the peak position of the transfer function to a larger diameter than the targeted diameter. The response spectra calculated with the simulated transfer function agree well both in shapes and peak values with the experimental data present in a previous study for both nanoparticles and submicron particles larger than 100 nm. The predicted particle masses also agree well with the PSL's experimental data of the article.

Copyright 2014 American Association for Aerosol Research  相似文献   


16.
A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range is developed. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. By measuring particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobility analyzer (DMA) classified (NH4)2SO2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. However, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field.

Copyright © 2017 American Association for Aerosol Research  相似文献   


17.
The theory of gas absorption accompanied by fast pseudo-fast order reaction which considered dependences of diffusivity, kinetic constant and Henry's law constant on absolute temperature and ionic strength was used to obtain values of effective interfacial areas and mass transfer coefficients in gas and liquid phase.

Experimental measurement of carbon dioxide absorption from mixture with air was performed in a pilot-plant column with expanded metal sheet packing irrigated with sodium hydroxide solution.

Resulting liquid and gas-side mass transfer coefficients are compared with values obtained from physical Absorption measurement of carbon dioxide into water and with measurement of gas-side mass transfer coefficient for sulphur dioxide in the same column.

The differences between determined values are discussed.  相似文献   


18.
The Institute of Radioprotection and Nuclear Safety (IRSN in French) is conducting research on the impact of a fire on the behaviour of containment devices such as high efficiency particulate air (HEPA) pleated filters for radioactive materials. This work aims to study the clogging of HEPA filters in case of fire involving realistic materials (polymers making up gloves boxes, waste treatment solvent, hydraulic oil, solid material mixtures making up a trash bin, electrical cables, and cabinets) used in nuclear facilities, from the medium to large scale. The clogging kinetics of industrial pleated HEPA filters is monitored by measuring the pressure drop of the filters and the filtered air temperature at a given filtration velocity (from 0.23 to 2.1 cm/s). Upstream HEPA filters, combustion aerosols are characterized in terms of size distribution, mass concentration, composition, and particle morphology using, respectively, a DMS500 (CambustionLTD), glass fiber filter sampling, and transmission electron microscope analysis of particles deposited on TEM grids. Particles emitted denote well-known fractal morphology, are composed of carbonaceous primary particles with diameters ranging from 31 nm to 48 nm and showing an high clogging efficiency. An empirical relationship has been successfully applied to the obtained results for a larger range of fuels, filtration velocities and fire conditions.

Finally, experiments have been performed on a large-scale facility, using full-scale fire scenarios (electrical cabinet, constant, and variable filtration velocity) and a reasonable agreement was observed with our empirical relationship. At this scale, particles appear to be compact, with a complex composition and diameters close to 220 nm with a lower clogging efficiency.

Copyright 2014 American Association for Aerosol Research  相似文献   


19.
An external electric field was applied on the filter to improve its collection efficiency, and the collection efficiencies of the different filters under various conditions were evaluated. Dominant electrical filtration mechanisms for each condition were investigated using experimental and theoretical approaches. Four types of air filters were used as test filters: a charged fiber filter, a low-grade filter with 50% collection efficiency in the most penetration particle size (MPPS) zone, and two high-grade filters with more than 95% collection efficiency in the MPPS zone. Three different particle charge states—neutralized, single-charged and uncharged—were considered. For neutralized particles, the external electric field led to a 14.5%p. and 2.5%p. increase in the collection efficiencies of the low-grade filter and charged fiber filter, respectively. With the electric field, the collection efficiency of the low-grade filter increased by 30%p. for single-charged particles. The electric field also affected the collection efficiencies of the charged filter and high-grade filters, but the effect was not significant. For uncharged particles, the electric field did not lead to a remarkable increase in the collection efficiencies of any of the filters. Through experimental and theoretical analysis, it was found that the polarization force imposed on the charged fiber was the dominant factor for the charged fiber filter regardless of application of the external electric field. The Coulombic force imposed on the electric field was the dominant factor for the low-grade filter, while both the Coulombic and the polarization forces affected the collection efficiency of the high-grade filter.

Copyright © 2017 American Association for Aerosol Research  相似文献   


20.
The charging behavior of metal nanoparticles bouncing from conductive surfaces was investigated in a single-stage-low-pressure-impactor. Ag and Pt particles of a fixed particle size between 20 nm and 100 nm were impacted on targets of bulk Au and Pt, respectively, and the resulting contact charge was measured as a function of impact velocity. The influence of target hardness was revealed by the comparison to measurements with soft nanostructured layers obtained by direct current sputtering of Au and Pt on mica discs. From the dataset, regions of elastic, elastoplastic, and fully plastic particle deformation were identified, and the size-dependent effective yield stress for the respective particle materials was calculated. The influence of electron back-tunneling in the separation phase of the collision on the effective contact charge is discussed.

Copyright 2014 American Association for Aerosol Research  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号