首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A fine particulate matter (PM2.5) monitoring network of filter-based federal reference methods and federal equivalent methods (FRM/FEMs) is used to assess local ambient air quality by comparison to National Ambient Air Quality Standards (NAAQS) at about 750 sites across the continental United States. Currently, FRM samplers utilize polytetrafluoroethylene (PTFE) filters to gravimetrically determine PM2.5 mass concentrations. At most of these sites, sample composition is unavailable. In this study, we present the proof-of-principle estimation of the carbonaceous fraction of fine aerosols on FRM filters using a nondestructive Fourier transform infrared (FT-IR) method. Previously, a quantitative FT-IR method accurately determined thermal/optical reflectance equivalent organic and elemental carbon (a.k.a., FT-IR organic carbon [OC] and elemental carbon [EC]) on filters collected from the chemical speciation network (CSN). Given the similar configuration of FRM and CSN aerosol samplers, OC and EC were directly determined on FRM filters on a mass-per-filter-area basis using CSN calibrations developed from nine sites during 2013 that have collocated CSN and FRM samplers. FRM OC and EC predictions were found to be comparable to those of the CSN on most figures of merit (e.g., R2) when the type of PTFE filter used for aerosol collection was the same in both networks. Although prediction accuracy remained unaffected, FT-IR OC and EC determined on filters produced by a different manufacturer show marginally increased prediction errors suggesting that PTFE filter type influences extending CSN calibrations to FRM samples. Overall, these findings suggest that quantifying FT-IR OC and EC on FRM samples appears feasible.

© 2018 American Association for Aerosol Research  相似文献   


2.
The Fourier-transform infrared (FT-IR) spectra of ambient fine aerosols were used with partial least-squares (PLS) regression to accurately, inexpensively, and nondestructively predict organic carbon (OC) on polytetrafluoroethylene (PTFE) filters in the U.S. Environmental Protection Agencies' Chemical Speciation Network (CSN). Recently, a similar FT-IR method was used for OC determination in the rural United States Interagency Monitoring of PROtected Visual Environments network, with the present work extending the method to urban aerosols with low mass loadings. In the present study, FT-IR spectra were calibrated to collocated thermal/optical reflectance (TOR) OC measurements following numerical processing with a second derivative filter, backward Monte Carlo unimportant variable elimination, and a quadratic discriminant analysis-PLS vapor correction routine. After processing and vapor correcting spectra, the number of model components (latent variables) were reduced from thirty-five to three with only the first PLS component patently predicting OC. The two lesser components modeled PTFE and inorganic interference remaining in the spectra. A wavenumber ranking procedure— using both the variable importance in projection and bootstrapped confidence intervals— underscored the primacy of aliphatic C-H stretches and carbonyl vibrations for OC prediction. Aliphatic deformations, amines, organonitrate, carboxylate, and aromatic vibrations were also valuable for OC quantification. This study demonstrates that PLS models quantifying TOR OC are explicable in terms of organic functional group absorption after judiciously processing FT-IR spectra.

Copyright © 2016 American Association for Aerosol Research  相似文献   


3.
Pure starch has been isolated from different samples: oak acorn, sorghum, and potato using alkali steep and wet-milling procedure. The structure of the extracted starches was analyzed using Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction. Their physicochemical properties (water content, ash content, pH, amylose content, swelling power, and water solubility index) were determined. The FT-IR spectra of isolated native starches have shown the main bands characterizing the starch. For sorghum starch (SS) and oak acorn starch (OAS), X-ray diffractograms exhibited an A-type diffraction pattern, while potato starch (PS) displayed typical B-type pattern. Compared to sorghum and oak acorn, potato starch has shown the highest level of both swelling power and water solubility index.

To estimate the color removal quality of the extracted starches, a sorption of a dye named maxilon red GRL has been carried onto them.

The results of equilibrium isotherms in batch adsorption process were analyzed according to the Langmuir and Freundlich model. The characteristic parameters were determined for each model. Furthermore, the effect of initial pH and ionic strength on adsorption capacity was considered, and regeneration studies were carried out.  相似文献   


4.
The IMPROVE (Interagency Monitoring of PROtected Visual Environments) network monitors the attenuation of light by PM2.5 samples (fine particulate matter, Daero = 2.5 μm) routinely collected on polytetrafluoroethylene (PTFE) filters throughout the United States. The results of this measurement have long been reported as an indicator of absorption, with no rigorous calibration as such. Filter-based absorption measurements more conventionally employ optically thick quartz- or glass-fiber collection media, for which a substantial calibration literature offers algorithms to correct for particle scattering and filter loading effects. PTFE membranes are optically thinner and less homogeneous than the fiber media, but they avoid interference from adsorbed organic gases that is associated with quartz and glass fiber media. IMPROVE's measurement system is a hybrid of integrating sphere and integrating plate that records the light backscattered as well as transmitted by each filter. This article introduces and validates a theory-based model for calibration and data reduction that accounts for particle scattering effects as well as variations in filter optics. Tests based on historical analyses of field blanks and recent reanalyses of archived samples establish that the current system has operated with a stable calibration since 2003.

The newly calibrated IMPROVE absorption values correlate strongly with the refractory carbon fraction reported by thermal-optical analysis as “elemental” (EC). EC is sometimes treated as the only significant light absorber in PM2.5, but the general decline observed between 2005 and 2014 in IMPROVE EC was not accompanied by a comparable decline in IMPROVE absorption. Absorption also exhibits a distinct association with Fe concentrations, which at IMPROVE sites are attributable mainly to mineral dusts and have generally held steady or risen since 2003. An increased relative contribution by mineral dusts can explain some, but not all, of the observed difference between recent absorption and EC trends.  相似文献   


5.
Lab-scale soot nanoparticle generators are used by the aerosol research community to study the properties of soot over a broad range of particle size distributions, and number and mass concentrations. In this study, a novel miniature inverted-flame burner is presented and its emitted soot particles were characterized. The burner consisted of two co-annular tubes for fuel and co-flow air and the flame was enclosed by the latter. The fuel used was ethylene. A scanning mobility particle sizer (SMPS) and an aerodynamic aerosol classifier (AAC) were used to measure mobility and aerodynamic size distribution of soot particles, respectively. Particle morphology was studied using transmission electron microscopy (TEM). The elemental carbon (EC) and organic carbon (OC) content of the soot were measured using thermal-optical analysis (TOA). The burner produced soot particles with mobility diameter range of 66–270?nm, aerodynamic diameter range of 56–140?nm, and total concentration range of 2?×?105–1?×?107?cm?3. TEM images showed that most soot particles were sub-micron soot aggregates. Some soot superaggregates, typically larger than 2?µm in length, were observed and their abundance increased with ethylene flow rate. TOA showed that the concentration of EC in the generated soot increased with ethylene flow rate, and the soot was observed to have high EC fraction at high ethylene flow rates. The miniature inverted-flame burner was demonstrated to produce soot nanoparticles over a range of concentrations and sizes with high EC content, making it a practical device to study soot nanoparticle properties in different applications.

Copyright © 2019 American Association for Aerosol Research  相似文献   


6.
We performed controlled combustion experiments to investigate the dependence of the mass absorption cross-section (MAC) and absorption Ångström exponent (AAE) of combustion carbonaceous aerosol emissions on combustion conditions. Using benzene and toluene as fuels, we obtained a wide range of combustion conditions by varying the combustion temperature and equivalence ratio. We also used nitrogen as a passive diluent to tune the combustion conditions. We calculated MAC and AAE from multi-wavelength light-absorption measurements using a photoacoustic spectrophotometer and aerosol mass loadings estimated from thermal-optical analysis. Starting with relatively low-temperature and fuel-rich combustion conditions and progressively increasing the temperature and/or decreasing the equivalence ratio, we produced emissions with progressive change from weakly absorbing brown carbon (BrC) (MAC at 532?nm (MAC532) = 0.24?m2/g and AAE = 8.6) to strongly absorbing BrC (MAC532 = 2.1?m2/g and AAE = 3.1) to mixtures of black carbon (BC) and strongly absorbing BrC (MAC532 = 7.7?m2/g and AAE = 1.5). These findings indicate that combustion conditions are important in dictating the light-absorption properties of the emitted aerosols. Furthermore, regardless of fuel type and combustion conditions, the emitted aerosols exhibit a unified continuum of light-absorption properties that can be characterized by MAC532 and AAE pairs. The MAC532 and AAE pairs are well-correlated with the elemental carbon-to-organic carbon ratio (EC/OC), which is a proxy of combustion conditions, confirming previous findings that EC/OC is a practical basis for parameterizing the light-absorption properties of combustion carbonaceous aerosols.

Copyright © 2019 American Association for Aerosol Research  相似文献   


7.
In this study, the shear strength behavior of adhesively bonded joints, made of aluminum composite foams subjected to high-temperature processes, has been investigated. Aluminum composite foam and solid aluminum blocks were used to form single lap joints and as the binder, a methacrylate-based structural adhesive has been selected. Foam-foam and solid-foam joints were formed and cured at room temperature for 24 hours. After curing process, aging at 200 oC was performed on the samples for 15, 30, 45, 60 minutes. The aged samples were subjected to lap shear testing for adhesively bonded metals and the influences of aging duration on joint strength and failure type were investigated.

As a result, lower strengths were obtained in all samples that aged under high temperature compared to non-aged samples. After the application of short-term (15-30 min) aging processes on samples, it is observed that they have joint strength values about 50% of the joint strength of non-aged samples. However, strength values of short-term aged joints (15, 30 min) remain higher than the strength values of the foam materials used in the tests. These results show that methacrylate-based adhesives subjected to short-term thermal loads up to 200 °C can be used in constructions.  相似文献   


8.
The aim of this in vitro study was to evaluate the effects of chlorhexidine gluconate (2%), sodium hypochloride (2.5%), ozone gas, and boric acid at different concentrations (1%, 3%, 5%, and 7%) on microleakage from composite restorations.

In a total of 80 extracted human canine teeth, a class V cavity was opened on the buccal surface and the samples were separated into eight groups. In the control group, no procedure was applied for cavity disinfection, then composite restoration (Z250, 3M) was made using single-stage, self-etch adhesive (Single Bond 3M). In the other groups, seven different disinfectants were used, then the cavity was restored. The teeth were split into two in the buccolingual direction, parallel to the long axes. Stain penetration was examined under stereomicroscope and scored. Examination with SEM was made on one sample from each group, selected at random. Statistical evaluations were made using Dunnett C Post Hoc Comparison and Kruskal–Wallis H tests.

In the occlusal region evaluation, the groups with the lowest level of leakage were the 3% and 5% boric acid groups, and the highest levels of microleakage were determined in the chlorhexidine group and the 1% boric acid group. In the gingival region, the lowest level of microleakage was in the 5% boric acid group and the highest levels were determined in the 1% and 7% boric acid groups.

Boric acid disinfectants used at suitable concentrations were not seen to create a risk in respect of microleakage.  相似文献   


9.
Routine calibrations of online aerosol chemical composition analyzers are important for assessing data quality during field measurements. The combination of a differential mobility analyzer (DMA) and condensation particle counter (CPC) is a reliable, conventional method for calibrations. However, some logistical issues arise, including the use of radioactive material, quality control, and deployment costs. Herein, we propose a new, simple calibration method for a particle mass spectrometer using polydispersed aerosol particles combined with an optical particle sizer. We used a laser-induced incandescence–mass spectrometric analyzer (LII-MS) to test the new method. Polydispersed aerosol particles of selected chemical compounds (ammonium sulfate and potassium nitrate) were generated by an aerosol atomizer. The LII section was used as an optical particle sizer for measuring number/volume size distributions of polydispersed aerosol particles. The calibration of the MS section was performed based on the mass concentrations of polydispersed aerosol particles estimated from the integration of the volume size distributions. The accuracy of the particle sizing for each compound is a key issue and was evaluated by measuring optical pulse height distributions for monodispersed ammonium sulfate and potassium nitrate particles as well as polystyrene latex particles. A comparison of the proposed method with the conventional DMA-CPC method and its potential uncertainties are discussed.

Copyright © 2018 American Association for Aerosol Research  相似文献   


10.
Objectives: The aim of this study was to evaluate the use of dual-cure resin cement to promote the bonding between a veneering PEEK and zirconia or titanium surfaces.

Materials and methods: The surface of titanium and sintered zirconia disks were gritblasted, ultra-sonically cleaned in distilled water, and dryed by oil-free air. Then, a adhesive system was applied on the clean and dry surfaces. Disks of PEEK or 30% glass-reinforced PEEK were cut from a rod and their surface were acid etched and therefore the PEEK roughness was analysed using a contact profilometer. A resin cement was then applied between the substrates and the veneering PEEK and light cured for 4 Shear bond strength tests were performed on PEEK-cement to zirconia or titanium interfaces. Scanning electron microscopy (SEM) analyses were performed to evaluate the samples surface, interface and failure mode.

Results: Surface treatment with acid etching decreased the average roughness of PEEK-based surfaces. oMicroscopic analyses by SEM revealed morphological aspects of a poor bonding between the resin-based cement and PEEK. Those aspects could be confirmed by the low mean values in shear bond strength. The fracture analysis showed that the main failure mode was adhesive, which explain the low values of shear bond strength.

Conclusion: PEEK is a promising material for dental applications. However, significant improvements on surface modifications and in chemical composition of the cement are still required for dental applications involving cementation of PEEK or PEEK-30GF to zirconia or titanium concerning a desirable long-term clinical performance of prosthetic structures.  相似文献   


11.
Objectives: To investigate the effect of different self-etch adhesive systems application techniques: active or passive in a single or double layer on adhesive–dentin microshear bond strength.

Methods: Occlusal surfaces of 48 extracted human molars were ground to expose flat superficial dentin surfaces. Specimens were randomly divided into two main groups according to the tested self-etch adhesive system either: One-step self-etch (AdperTM easy-one) or two-step self-etch (AdperTM SE Plus). Each adhesive system was applied on the prepared dentin surfaces followed one of these techniques: (1) Passive application of a single layer, (2) Active application of single layer, (3) Passive application of double adhesive layer (with light curing in between), and (4) Active application of double adhesive layers. Resin composite was packed inside micro-tubes fixed on the bonded dentin surfaces and light cured for 40 s. All specimens were stored in artificial saliva either for 24 h or 3 months before testing. Microshear bond strength test was employed using a universal testing machine at a crosshead speed of 0.5 mm/min.

Results: AdperTM SE Plus showed higher significant microshear bond strength in compared with AdperTM easy-one. For both adhesive systems active application showed higher significant microshear bond strength to dentin than passive application. Double application of adhesive systems showed lower microshear bond strength than single application.

Conclusion: Active application of self-etch adhesives could improve the dentin microshear bond strength. Double application with curing in between the layers did not improve the bond strength to the tested adhesive.  相似文献   


12.
We introduce a new method to estimate the mass concentration of particulate organic carbon (POC) collected on quartz filters, demonstrating it using quartz-filter samples collected in greater Pittsburgh. This method combines thermal-optical organic carbon and elemental carbon (OC/EC) analysis and the volatility basis set (VBS) to quantify the mass concentration of semi-volatile POC on the filters. The dataset includes ambient samples collected at a number of sites in both summer and winter as well as samples from a highway tunnel. As a reference we use the two-filter bare-Quartz minus Quartz-Behind-Teflon (Q-QBT) approach to estimate the adsorbed gaseous fraction of organic carbon (OC), finding a substantial fraction in both the gas and particle phases under all conditions. In the new method we use OC fractions measured during different temperature stages of the OC/EC analysis for the single bare-quartz (BQ) filter in combination with partitioning theory to predict the volatility distributions of the measured OC, which we describe with the VBS. The effective volatility bins are consistent for data from both ambient samples and primary organic aerosol (POA)-enriched tunnel samples. Consequently, with the VBS model and total OC fractions measured over different heating stages, particulate OC can be determined by using the BQ filter alone. This method can thus be applied to all quartz filter-based OC/EC analyses to estimate the POC concentration without using backup filters.

© 2016 American Association for Aerosol Research  相似文献   


13.
Objective: The aim of the present study was to assess the influence of an in vitro aging regime (NaOCl storage) on dentine microtensile bond strength (μTBS) of five one-step one-bottle self-etch adhesives in comparison with bond strength of two-step self-etch adhesive.

Material and methods: Flattened dentine surfaces from 30 bovine incisors were bonded with five one-step one-bottle self-etch adhesives (iBond, Clearfil S3 Bond, AdheSE One F, G-Bond, Optibond all-in-one) and one two-step self-etching adhesive (Clearfil SE Bond). Composite buildups were done with microhybrid resin composite. Bonded samples were sectioned into resin–dentine sticks of 0.8 mm2 cross section. Randomly selected 20 sticks were tested directly by microtensile bond strength testing machine, whereas another randomly selected 20 sticks were tested after being stored in solution of 10% NaOCl for 5 h. Data were analyzed by two-way analysis of variance (ANOVA) and Tukey’s honest significant difference (HSD) tests (p < 0.05).

Results: All adhesives exhibited similar dentine bond strength with exception of G-Bond. After NaOCl storage, μTBS reduced in all groups significantly. The lowest μTBS were found for G-Bond. Rest of one-step self-etch adhesives presented similar μTBS with two-step self-etch adhesive.

Conclusion: Interfaces of resin–dentine bonding are susceptible to NaOCl degradation. The amount of the destruction depends on adhesive system. NaOCl degradation of the nonresin encapsulated collagen fibers might decrease long-term stability of resin bonding with dentine.  相似文献   


14.
In this study, we describe a newly developed three-wavelength differential photoacoustic spectrometer, which we denote RGB-DPAS, for aerosol absorption measurement in the visible spectral range: 671?nm (red), 532?nm (green), and 473?nm (blue). This instrument utilizes the differential photoacoustic spectrometric (DPAS) technique, which simultaneously measures light absorption signals due to total particulate matter?+?gaseous samples and those of gaseous samples alone. The difference between the photoacoustic signals recorded from the two nearly identical acoustic cells (<0.2% variability in physical dimensions) yields the aerosol photoacoustic signals at the three wavelengths. This measurement approach eliminates the interferences from light-absorbing gaseous species as well as low-frequency ambient acoustic noise. In this study, we demonstrate the linearity of the RGB-DPAS signal response to the number concentration of the synthetic carbon black particles at electrical mobility diameter (Dm) = 350?nm, which is used as a calibration surrogate. Based on the Allan variance analysis, detection limits (2σ) of 0.20?Mm?1 at 671?nm, 0.22?Mm?1 at 532?nm, and 0.90?Mm?1 at 473?nm have been achieved in 100?s data acquisition for the RGB-DPAS instrument.

Copyright © 2018 American Association for Aerosol Research  相似文献   


15.
Air stripping towers have been recommended for the removal of volatile organic compounds (VOCs) in drinking water supply and industrial waste treatment systems. This technique removes VOCs economically in the liquid phase. It can, however, create adverse secondary environmental impacts by removing VOCs from the water and discharging them to the air.

A commonly proposed method for controlling .VOC emissions is filtration of the off-gas through adsorption of the stripped organics in the off-gas by granular activated carbon. The high incremental cost of this alternative has produced an interest in alternative control technologies.

One alternative currently available is based on short wavelength ultraviolet (UV) radiation. This technique combines the effects of ozone generation, free radical formation and photolysis of the contaminants to effectively control the VOC emissions. This technique is known as Advanced Photo Oxidation (APO)R.

The cost for APO is $0.27/m3 for a 3.8 m3/hr contaminated water system. A system of this size is adequate for a groundwater decontamination project where a moderate length of time is available for restoration of the site. The cost of a conventional air stripping tower with Granular Activated Carbon (GAC) adsorption emissions control in this size range would be $0.40 to $0.45/m3 (J.M. Montgomery, 1986).

Additional testing will be required to fully develop design guidelines for different contaminants and larger systems. Another area for additional technical documentation is the application of this technique to the liquid phase oxidation of VOCs.  相似文献   


16.
Accurate exposure assessments are needed to evaluate health hazards caused by airborne microorganisms and require air samplers that efficiently capture representative samples. This highlights the need for samplers with well-defined performance characteristics. While generic aerosol performance measurements are fundamental to evaluate/compare samplers, the added complexity caused by the diversity of microorganisms, especially in combination with cultivation-based analysis methods, may render such measurements inadequate to assess suitability for bioaerosols. Specific performance measurements that take into account the end-to-end sampling process, targeted bioaerosol and analysis method could help guide selection of air samplers.

Nine different samplers (impactors/impingers/cyclones/ electrostatic precipitators/filtration samplers) were subjected to comparative performance testing in this work. Their end-to-end cultivation-based biological sampling efficiencies (BSEs) and PCR-/microscopy-based physical sampling efficiencies (PSEs) relative to a reference sampler (BioSampler) were determined for gram-negative and gram-positive vegetative bacteria, bacterial spores, and viruses.

Significant differences were revealed among the samplers and shown to depend on the bioaerosol's stress–sensitivity and particle size. Samplers employing dry collection had lower BSEs for stress-sensitive bioaerosols than wet collection methods, while nonfilter-based samplers showed reduced PSEs for 1 μm compared to 4 μm bioaerosols. Several samplers were shown to underestimate bioaerosol concentration levels relative to the BioSampler due to having lower sampling efficiencies, although they generally obtained samples that were more concentrated due to having higher concentration factors.

Our work may help increase user awareness about important performance criteria for bioaerosol sampling, which could contribute to methodological harmonization/standardization and result in more reliable exposure assessments for airborne pathogens and other bioaerosols of interest.

Copyright 2014 American Association for Aerosol Research  相似文献   


17.
The critical conditions under which flow curves in capillary flow abruptly change their slope to zero (spurt) and the influence of solvent additive and solvent power on this phenomenon have been investigated. Based on a forced high elastic state concept an expression for the so-called spurt phenomenon, i.e. fracture-induced slip at the wall in a capillary of a capillary rheometer, is deduced. It is found that the spurt fracture stress, τs cr, and the spurt fracture shear rate, γs cr, can be represented by the master curve log (τ s crr ((p/Mc)PE(Mc/p))2/3 against log (aT γs cr), where aT is the WLF shift factor, Mc the molecular weight between entanglements and p the density.

Estimation of slip rates at the wall and measurements on slightly crosslinked high density polyethylene supports the assumption that spurt results from melt fracture at the capillary wall.

Only addition of the non-solvent calcium stearate (with high density polyethylene) results in flow behavior which significantly deviates from that found for samples containing good solvents. Gel permeation chromato-graphy indicates that if chain scission resulting in lower molecular weight takes place, it will be limited to thin layers near the capillary wall.

melt fracture in the capillary cannot be reached. The flow behavior is influenced by addition of the non-solvent calcium stearate. The slopes of the flow curves is changed at relatively low shear rates but the high molecular weight polymer DMDS 5140 never the less shows spurt behavior at the same stress as for the pure sample.

This behavior may tentatively be interpreted as being caused by the formation of a boundary layer of non-solvent at low shear rate the thickness of which depends on the polymer and flow field. At stresses corresponding to the critical conditions, fracture in the polymer takes place. The interface between the non-solvent layer and the polymer matrix must according to Han61 be expected to be unstable  相似文献   


18.
Polycyclic aromatic hydrocarbons (PAHs) are relatively well-known organic pollutants and due to their carcinogenic and mutagenic properties their presence in the environment still attracts a lot of attention.

According to literature reports and own research, PAHs presence in wastewaters is common. It was confirmed that PAHs are the components of municipal landfill leachate. Membrane techniques are one of the most interesting ways of removing PAHs from leachate.

The purpose of this article is to monitor PAHs concentration changes during the membrane (reverse osmosis - RO) leachate treatment processes. In the first stage of testing leachates were filtrated on the sand bed (pre-filtration). After the pre-filtration they were directed to the membrane module for the main filtration.

Sixteen PAHs listed by EPA were analyzed. The results with information on PAHs concentration in leachate samples were presented using HPLC with fluorescence detection (FLD). The changes in PAHs concentration were determined in leachate samples before and after pre-filtration as well as after RO. The decrease of PAHs concentration in the samples was observed after these processes. The total concentration of 16 PAHs in raw municipal landfill leachates amounted to 23.64–26.95 μg/L. The research confirmed the high efficiency in removal of PAHs while using a reverse osmosis (59–72%). Including the pre-filtration, the overall level of removed PAHs reached 81–86%. The average PAHs concentration after pre-filtration and RO was in the 4.46–4.99 μg/L range. The municipal landfill leachate with a high concentration of PAHs should be cleaned before it is discharged into the environment.  相似文献   


19.
Flame-generated soot from miniCAST burners is increasingly being used in academia and industry as engine exhaust soot surrogate for atmospheric studies and instrument calibration. Previous studies have found that elemental carbon (EC) content of miniCAST soot is proportional to the mean particle size. Here, the characterization of a prototype miniCAST generator (5201 Type BC), which was designed to decouple the soot composition from the particle size and produce soot particles with high EC and BC content in a large size range, is reported. This prototype may operate either in a diffusion-flame or a partially premixed-flame mode, an option that was not available in former models. It was confirmed that soot properties, such as EC content and Ångström absorption exponent (AAE), were linked to the overall flame composition. In particular, combustion under fuel-rich conditions provided particles with size coupled to the EC fraction and AAE, i.e. smaller particles exhibited a lower EC fraction and higher AAE. In contrast, with fuel-lean diffusion flames and especially with premixed flames under near overall stoichiometric conditions small particles (down to 30?nm) with high EC/TC ratios (>60%) and low AAE (≈1.4) could be generated even without any thermal after-treatment. This new source might thus serve in the future as a useful surrogate for engine exhaust emissions and help to improve calibration procedures of common aerosol instruments.

Copyright © 2018 The Author(s). Published with license by Taylor & Francis Group, LLC  相似文献   


20.
Steam collection devices collecting aerosol particles into liquid samples are frequently used to analyze water-soluble particulate material. The fate of water-insoluble components is often neglected. In this work, we show that fresh soot particles can be suspended into pure water using a steam collection device, the particle-into-liquid sampler (PILS, Weber et?al. 2001). The overall collection efficiency of freshly generated soot particles was found to be on the order of 20%. This shows that, depending on the analytic technique employed, the presence of insoluble, and/or hydrophobic particles in liquid samples from steam collection cannot be neglected.

Copyright © 2018 The Author(s). Published with license by Taylor & Francis Group, LLC  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号