首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Aerodynamic Aerosol Classifier (AAC) is a novel instrument that selects aerosol particles based on their relaxation time or aerodynamic diameter. Additional theory and characterization is required to allow the AAC to accurately measure an aerosol’s aerodynamic size distribution by stepping while connected to a particle counter (such as a Condensation Particle Counter, CPC). To achieve this goal, this study characterized the AAC transfer function (from 32 nm to 3 μm) using tandem AACs and comparing the experimental results to the theoretical tandem deconvolution. These results show that the AAC transmission efficiency is 2.6–5.1 times higher than a combined Krypton-85 radioactive neutralizer and Differential Mobility Analyzer (DMA), as the AAC classifies particles independent of their charge state. However, the AAC transfer function is 1.3–1.9 times broader than predicted by theory. Using this characterized transfer function, the theory to measure an aerosol’s aerodynamic size distribution using an AAC and particle counter was developed. The transfer function characterization and stepping deconvolution were validated by comparing the size distribution measured with an AAC-CPC system against parallel measurements taken with a Scanning Mobility Particle Sizer (SMPS), CPC, and Electrical Low Pressure Impactor (ELPI). The effects of changing AAC classifier conditions on the particle selected were also investigated and found to be small (<1.5%) within its operating range.

Copyright © 2018 American Association for Aerosol Research  相似文献   


2.
Abstract

A scanning mobility particle sizer (SMPS) is one of the most widely used instruments to obtain size distribution for atmospheric particles. In an SMPS measurement, a voltage scanning process on a differential mobility analyzer is required, and it typically takes 30?s to 120?s to obtain one entire size distribution. A size distribution obtained by an SMPS measurement might have significant deviations from actual values due to the scanning process when the measured particle concentrations change over time. In this study, we introduce an analytical approach for estimating particle size distribution under exponentially decaying and growing particle concentrations. The analytical SMPS results are validated by performing experiments using exponentially decaying particle concentrations under the same conditions. Furthermore, the effects of a decay parameter, initial size distribution, and scan time are evaluated, and the deviations from actual (real or true) size distributions obtained by an exact solution are analyzed. Geometric mean diameters and standard deviations of the size distributions from SMPS results increase or decrease with exponentially decaying or growing concentrations, respectively, and total concentrations estimated by the analytical SMPS approach are significantly underestimated or overestimated compared to real total concentrations. While SMPS measurements have been widely employed in various applications such as atmospheric particle characterization in highly variable particle concentrations versus time, very few studies on the influence of changing concentrations on SMPS measurements have been conducted. Therefore, the introduced analytical approach and findings provide valuable insight into the importance of accurate SMPS measurements with changing particle concentrations.

Copyright © 2020 American Association for Aerosol Research  相似文献   

3.
The ability of atmospheric particles to absorb water has extensive climate, atmospheric chemistry, and health implications, and considerable effort has gone into determining relationships between particle composition and hygroscopicity. Parallel techniques, in which co-located composition and hygroscopicity measurements are combined to infer composition-hygroscopicity relationships, may not detect the influence of external mixtures. Previous in-line measurements have been limited to single-particle composition or a limited analyte range, and are often non-quantitative and/or offline. Here, we present for the first time in-series, online, quantitative hygroscopicity-composition measurements using a Brechtel Manufacturing, Inc. Hybrid Tandem Differential Mobility Analyzer and an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This technique is first verified using laboratory-generated external particle mixtures, then extended to ambient measurements at a seaside sampling side at the Hong Kong University of Science and Technology. The technique successfully separated laboratory-generated particles of differing hygroscopicities and showed promise for atmospheric particles, though high mass attenuation endemic to the HTDMA dual size selection limits application to environments with at least ~14–41 μg/m3 of particulate mass, depending on composition.

Copyright © 2017 American Association for Aerosol Research  相似文献   


4.
Abstract

A parallel plate differential mobility analyzer (DMA) having 100 independent current collectors is calibrated to relate the axial distances Ln between the inlet slit and the detector position to the particle mobility Z at given voltage difference V and sheath gas flow rate Q. Calibrating species are tetraheptylammonium bromide clusters (THABr) and polyethylene glycol (PEG35k, 5?nm in diameter), generated by a bipolar electrospray source, and purified in a cylindrical DMA. Gaussian fitting of the raw discrete mobility spectra in the form of ion current In versus collector position Ln , In (Ln ), yield the mean value Lo of the collector position maximizing the signal for a given ion. The many (Z,V,Lo ) triads obtained at given Q from many different DMA voltages and standard mobilities collapse into a single 1/(ZiVj ) vs Lo curve when slight adjustments are made to the Zi . For different flow rates, Q/(ZiVj ) vs. Lo curves collapse also, as long as the peaks are moderately narrow. However, for sufficiently small Q/Z, the THABr cluster peaks become broad, and the curves Q/(ZiVj ) vs. Lo cease to collapse precisely. In contrast, the data for PEG show that this behavior is not a low-Q (Reynolds number) effect from the growth of the two lateral boundary layers, but is rather due to the broad and non-Gaussian peak shapes obtained at low Q or high Z. The calibration is accordingly unaffected by the Reynolds number. This simplicity was unexpected, given the three-dimensional flow in this DMA with growing lateral boundary layers.

Copyright © 2020 American Association for Aerosol Research  相似文献   

5.
Abstract

Low-cost particulate matter (PM) sensors are now widely used by concerned citizens to monitor PM exposure despite poor validation under field conditions. Here, we report the field calibration of a modified version of the Laser Egg (LE), against Class III US EPA Federal Equivalent Method PM10 and PM2.5 β-attenuation analyzers. The calibration was performed at a site in the north-western Indo-Gangetic Plain from 27 April 2016 to 25 July 2016. At ambient PM mass loadings ranging from <1–838?µg m?3 and <1–228?µg m?3 for PM10 and PM2.5, respectively, measurements of PM10, PM2.5 from the LE were precise, with a Pearson correlation coefficient (r) >0.9 and a percentage coefficient of variance (CV) <12%. The original Mean Bias Error (MBE) of ~?90?µg m?3 decreased to ?30.9?µg m?3 (Sensor 1) and ?23.2?µg m?3 (Sensor 2) during the summer period (27 April–15 June 2016) after correcting for particle density and aspiration losses. During the monsoon period (16 June–25 July 2016) the MBE of the PM2.5 measurements decreased from 19.1?µg m?3 to 8.7?µg m?3 and from 28.3?µg m?3 to 16.5?µg m?3 for Sensor 1 and Sensor 2, respectively, after correcting for particle density and hygroscopic growth. The corrections reduced the overall MBE to <20?µg m?3 for PM10 and <3?µg m?3 for PM2.5, indicating that modified version of the LE could be used for ambient PM monitoring with appropriate correction and meteorological observations. However, users of the original product may underestimate their PM10 exposure.

Copyright © 2020 American Association for Aerosol Research  相似文献   

6.
Laser-induced incandescence (LII) measurements were conducted to explore the ability of LII to detect small soot particles of less than 10 nm in two sooting flat premixed flames of n-butane: a so-called nucleation flame obtained at a threshold equivalence ratio Φ = 1.75, in which the incipient soot particles undergo only minor soot surface growth along the flame, and a more sooting flame at Φ = 1.95. Size measurements were obtained by modeling the time-resolved LII signals detected using 1064 nm laser excitation. Spectrally-resolved LII signals collected in the nucleation flame display a similar blackbody-like behavior as mature soot. Soot particle temperature was determined from spectrally-resolved detection. LII modeling was conducted using parameters either relevant to those of mature soot or derived from fitting the modeled results to the experimental LII data. Particle size measurements were also carried out using (1) ex situ analysis by helium-ion microscopy (HIM) of particles sampled thermophoretically and (2) online size distribution analysis of microprobe-sampled particles using a 1 nm-SMPS. The size distributions of the incipient soot particles, found in the nucleation flame and in the early soot region of the Φ = 1.95 flame, derived from time-resolved LII signals are in good agreement with HIM and 1 nm-SMPS measurements and are in the range of 2–4 nm. The thermal and optical properties of incipient soot were found to be not radically different from those of mature soot commonly used in LII modeling. This explains the ability of incipient soot particles to produce continuous thermal emissions in the visible spectrum. This study demonstrates that LII is a promising in situ optical particle sizing technique that is capable of detecting incipient soot as small as about 2.5 nm and potentially 2 nm and resolving small changes in soot sizes below 10 nm.

© 2017 American Association for Aerosol Research  相似文献   


7.
Aerosol sampling and identification is vital for the assessment and control of particulate matter pollution, airborne pathogens, allergens, and toxins and their effect on air quality, human health, and climate change. In situ analysis of chemical and biological airborne components of aerosols on a conventional filter is challenging due to dilute samples in a large collection region. We present the design and evaluation of a micro-well (µ-well) aerosol collector for the assessment of airborne particulate matter (PM) in the 0.5–3 µm size range. The design minimizes particle collection areas allowing for in situ optical analysis and provides an increased limit of detection for liquid-based assays due to the high concentrations of analytes in the elution/analysis volume. The design of the collector is guided by computational fluid dynamics (CFD) modeling; it combines an aerodynamic concentrator inlet that focuses the aspirated aerosol into a narrow beam and a µ-well collector that limits the particle collection area to the µ-well volume. The optimization of the collector geometry and the operational conditions result in high concentrations of collected PM in the submillimeter region inside the µ-well. Collection efficiency experiments are performed in the aerosol chamber using fluorescent polystyrene microspheres to determine the performance of the collector as a function of particle size and sampling flow rate. The collector has the maximum collection efficiency of about 75% for 1 µm particles for the flow rate of 1 slpm. Particles bigger than 1 µm have lower collection efficiencies because of particle bounce and particle loss in the aerodynamic focusing inlet. Collected samples can be eluted from the device using standard pipettes, with an elution volume of 10–20 µL. The transparent collection substrate and the distinct collection region, independent of particle size, allows for in situ optical analysis of the collected PM.

© 2017 American Association for Aerosol Research  相似文献   


8.
Steam collection devices collecting aerosol particles into liquid samples are frequently used to analyze water-soluble particulate material. The fate of water-insoluble components is often neglected. In this work, we show that fresh soot particles can be suspended into pure water using a steam collection device, the particle-into-liquid sampler (PILS, Weber et?al. 2001). The overall collection efficiency of freshly generated soot particles was found to be on the order of 20%. This shows that, depending on the analytic technique employed, the presence of insoluble, and/or hydrophobic particles in liquid samples from steam collection cannot be neglected.

Copyright © 2018 The Author(s). Published with license by Taylor & Francis Group, LLC  相似文献   


9.
A differential mobility classifier (DMC) is one of the core components in electrical mobility particle sizers for sizing sub-micrometer particles. A DMC in the cylindrical configuration (i.e., constructed by axial aligning of the inner and outer cylinders) is typically included in the sizers. The knowledge of construction tolerance is required in the design of a cylindrical DMC. The numerical approach was applied in this study. Our study shows that the DMC transfer function deteriorated as the axial eccentricity was increased (i.e., the peak is reduced and the width at the half peak height is broaden). At high axial eccentricity, the transfer function peak would split into two. In addition to the flow parameters such as the sheath-to-aerosol flow rate ratio and total flow rate, the effect of geometrical parameters (i.e., the length and aspect ratio of the particle classification channel, and the ratio of outer-to-inner cylinder radii) on the transfer function of an eccentric DMC were also investigated. It is found that the classification length and the sheath-to-aerosol flow rate ratio have obvious impact on the transfer function of an eccentric DMC. Furthermore, the particle diffusivity reduced the effect of axial eccentricity on DMC transfer function, especially for particles with the sizes less than 10?nm.

Copyright © 2019 American Association for Aerosol Research  相似文献   


10.
The responses of aerosol particles to heating are important for measurements of their chemical, physical, and optical properties, classification, and determination of origin. However, the thermal behavior of organic aerosol particles is largely unknown. We provide a method to analyze such thermal behavior through heating from room temperature to >600°C by using a heating holder within a transmission electron microscope (TEM). Here we describe in-situ shape and size changes and variations in the compositions of individual particles before and after heating. We use ambient samples from wildland and agricultural biomass fires in North America collected during the 2013 Biomass Burning Observation Project (BBOP). The results indicate that individual tar balls (TB; spherical organic material) from biomass burning retained, on average, up to 30% of their volume when heated to 600°C. Chemical analysis reveals that K and Na remain in the residues, whereas S and O were lost. In contrast to bulk sample measurements of carbonaceous particles using thermal/optical carbon analyzers, our single-particle results imply that many individual organic particles consist of multiple types of organic matter having different thermal stabilities. Beyond TBs, our results suggest that because of their thermal stability some organic particles may not be detectable by using aerosol mass spectrometry or thermal/optical carbon analyzers. This result can lead to an underestimate of the abundance of TBs and other organic particles, and therefore biomass burning may have more influence than currently recognized in regional and global climate models.

Copyright © 2018 American Association for Aerosol Research  相似文献   


11.
Viscosity of atmospheric aerosol spans at least 15 orders of magnitude, from thin liquids to glassy solids, with possible concomitant impact on multiple processes of meteorological and/or climatological concern. Recently there has been interest in aerosol phase assessment techniques based upon dimer coalescence. Theoretical treatment suggests discernible reductions in dimer diameter begin when viscosity ~108 Pa·s and the dimer is spherical at ~105 Pa·s for submicron particles, or the middle range of the semisolid regime. A method using nanoparticle dimers synthesized by utilizing differential mobility analyzers of opposite polarity to produce monomers of opposite charge that subsequently undergo electrostatically mediated coagulation has been developed and is detailed in this work. This method was used to assess the aerosol phase state of several atmospherically relevant organic species and inorganic salts at relative humidity (RH) values ranging between 10% and 100%. Ammonium sulfate, monosodium α-ketoglutaric acid, sodium chloride, and sucrose all displayed RH-dependent phase state. These observed viscous transitions occurred at RH values less than existing deliquescence RH data, a result consistent with existing literature reports of RH-induced structural rearrangements. Fully coalesced and fully uncoalesced diameters could be fitted to single values, indicating that the presented technique is absolute. The method was also used to assess the phase state of dry sucrose aerosol at temperatures between 20°C and 70°C. A phase transition was noted at 63.7°C ± 4.4°C, near the glass transition temperature, suggesting the presented method may also be useful for probing phase responses to temperature perturbations.

Copyright © 2016 American Association for Aerosol Research  相似文献   


12.
Understanding transport characteristics of airborne nanotubes and nanofibers is important for assessing their fate in the respiratory system. Typically, diffusion and aerodynamic diameters capture key deposition mechanisms of near-spherical particles such as diffusion and impaction in the submicrometer size range. For nonspherical particles with high aspect ratios, such as aerosolized carbon nanotubes, these diameters can vary widely, requiring their independent measurement. The objective of this study was to develop an approach to provide approximate estimates of aerodynamic- and diffusion-equivalent diameters of airborne carbon nanotubes (CNTs) and carbon nanofibers (CNFs) using their morphological characteristics obtained from electron micrographs. The as-received CNT and CNF materials were aerosolized using different techniques such as dry dispersion and nebulization. Mobility and aerodynamic diameters of test aerosol were directly deduced from tandem measurement of particle mobility and mass. The same test aerosol was mobility-classified and subsequently collected on a microscopy grid for transmission electron microscopy (TEM) analysis. TEM micrographs were used to obtain projected area, maximum projected length, and two-dimensional (2-D) radius of gyration of test particles. Estimates of the aerodynamic diameter and the diffusion diameter were obtained by applying the fractal theory developed for aerosol agglomerates of primary spherical particles. After accounting for the particle dynamic shape factor, estimated aerodynamic diameters agreed with those from the direct measurements (using tandem mobility-mass technique) within 30–40% for the agglomerates with relatively open structures while the diffusion diameters agreed within 40–50%. The uncertainty of these estimates mainly depends on degree of overlapping structures in the microscopy image and nonuniformity in tube diameter. The approach could be useful in calculating approximate airborne properties from microscopy images of CNT and CNF agglomerates with relatively open structures.

This article not subject to US copyright law  相似文献   


13.
Effective densities derived from combined mobility and aerodynamic sizing provide a valuable tool for the characterization of non-spherical particles. Different effective densities have been introduced depending on the primary measurement parameters (mass, mobility and/or aerodynamic size) and the flow regime (transition, free-molecular). Here we explore the relationship between these effective densities, their physical interpretation and their dependence on particle shape, density and various equivalent diameters. We also provide an overview over the wide range of practical implications of the effective density concept with a particular focus on the characterization of particles with irregular or even unknown shape using commercially available instruments such as DMA, SMPS, FMPS, ELPI, APS, TEOM and multi-stage impactors. Finally, we identify new perspectives for particle characterization by extending the effective density concept into the free-molecular regime and by suggesting a triple-instrument approach for on-line determination of both particle density and shape as well as the dynamic shape factor for different flow regimes.  相似文献   

14.
A hybrid dust collector attached to a subway train bottom was developed for the effective removal of subway particulate matter (PM), by considering the fluctuating speed of a subway train between stations. It combines an electrostatic precipitator, which has good collection efficiency when the flow velocity is low, and an inertial dust separator, which has good collection efficiency when the flow velocity is high. The electrostatic precipitator and inertial dust separator guarantee a high collection efficiency regardless of the subway train operating speed by compensating for the other’s shortcomings. Wind tunnel test and numerical simulation were conducted to verify the performance of the hybrid dust collector. The experiment and simulation results were compared to verify the prediction accuracy of the simulation method. The collection efficiencies of the electrostatic precipitator and inertial dust separator were then simulated for various operating speeds of the subway train to predict the overall collection efficiency of the hybrid dust collector. As a result, when airflow velocity at the hybrid dust collector inlet varied from 2 to 8?m/s, subway PM10 or PM2.5 collection rate of a single hybrid dust collector was predicted to be in the range 88?~?123?μg/s or 30?~?35?μg/s, respectively. The use of multiple such hybrid dust collectors attached to the subway train bottom is expected to be effective in reducing fine dust concentration in subway tunnels.

Copyright © 2019 American Association for Aerosol Research  相似文献   


15.
Reactive uptake by ammonium (NH4+) salts is one of the major pathways for the gas-to-particle partitioning of alkyl amines. Recent studies using particles of individual ammonium salts and mixtures with hydrophilic organics have revealed that the degree of amine uptake depends on the phase state of ammonium salts, the particulate water contents and particle viscosity. The role of hydrophobic organic compounds, another important category of particulate organics commonly detected in the ambient atmosphere, in amine uptake remains unknown. Here we report the uptake of dimethylamine (DMA) by ammonium sulfate (AS) particles coated with fresh or ozone-aged bulk oleic acid (OA) at 60%, 30%, and <5% relative humidities (RHs) using an electrodynamic balance coupled with Raman spectroscopy. OA and DMA were selected to represent hydrophobic organics and alkyl amines, respectively. Over 74% of the original NH4+ ions were displaced due to DMA uptake, except those conditioned at <5% RH. On the other hand, the fresh or aged bulk OA coating retarded DMA uptake by preventing the particle surface from effectively accommodating gaseous DMA molecules. Judging from the estimated DMA uptake coefficients, the retardation gradually intensified as the weight percentage of coating increased before leveling off, likely when the particle surface was completely covered by fresh or aged bulk OA. We propose that the accommodation of DMA on the particle coating is the rate-limiting step of DMA uptake. Intensive aging of the OA coating had little effect on the equilibrium particle-phase compositions but retarded DMA uptake.

© 2017 American Association for Aerosol Research  相似文献   


16.
Metalworking fluids (MWFs) used in milling generate oil particles through impaction, action of centrifugal forces and evaporation/condensation mechanisms. The oil particles suspended in the factory atmosphere can affect the health of the labor force. In order to study the emission properties of these oil particles, this work investigates the oil particle emission rate and size distribution during milling using an environmental chamber method. Two commonly used operating modes for MWFs were selected, the minimum quantity lubrication (MQL) mode (40?ml/h) and the cooling mode (1 m³/h). The cooling mode without cutting was studied separately for comparison with the cooling mode with cutting. The results show that the oil particle emission rate in milling ranges from 7.2 to 641?mg/h, and the size distribution ranges from 0.265 to 12.5?µm. Evaporation/condensation is the main mechanism in the MQL mode. The majority of oil particles formed by evaporation/condensation are in the range of 0.265 to 1.8?µm. As the tool rotation speed increases, the particle emission rate increases, while the mass mean diameter (MMD) and the sauter mean diameter (SMD) decrease. Oil particles are mainly generated by the action of centrifugal force in the cooling mode, and mainly distributed in the range of 1.8 to 12.5?µm. The particle emission rate increases with the tool rotation speed, and the particle MMD and SMD increase with the tool rotation speed only in the cooling mode without cutting. The particle emission rate ranging from 1.8 to 12.5?µm, as well as PM5 and PM10, are a polynomial function of the square of tool rotation speed during the cooling mode. The coefficient of determination (R2) is above 0.99.

© 2018 American Association for Aerosol Research  相似文献   

17.
Differential mobility analyzers (DMAs) are widely used to determine the size of aerosol particles, and to probe their size-dependent physicochemical properties when two are employed in tandem. A limitation of tandem DMA (TDMA) systems is their long measuring cycle when the properties of more than one monodisperse population of particles need to be probed. In this work, we propose a simple modification of the classical cylindrical DMA by including three monodisperse-particle outlets in its central electrode (namely, the 3MO-DMA), with the objective of using it as the first DMA in TDMA systems for reducing their measuring cycle. The performance of the 3MO-DMA at different flow conditions was evaluated using laboratory-generated aerosol particles, and compared with theoretical predictions. The theory predicted accurately (i.e., within 3%) the geometric mean diameters of the three distinct populations, as well as the resolutions of the first and the third outlet, under all experimental conditions. For the second outlet, the resolution was 10% to 74% lower than that predicted theoretically depending on the sheath-to-aerosol flow ratio. Nevertheless, the geometric standard deviation of the monodisperse aerosol from all the outlets was less than 1.09, which is sufficient for using the 3MO-DMA designed and tested in this work as a first DMA to produce a monodisperse aerosol flow containing three distinct particle populations in TDMA systems.

Copyright © 2016 American Association for Aerosol Research  相似文献   


18.
A new palm-sized optical PM2.5 sensor has been developed and its performance evaluated. The PM2.5 mass concentration was calculated from the distribution of light scattering intensity by considering the relationship between scattering intensity and particle size. The results of laboratory tests suggested that the sensor can detect particles with diameters as small as ~0.3 µm and can measure PM2.5mass concentrations as high as ~600 µg/m3. Year-round ambient observations were conducted at four urban and suburban sites in Fukuoka, Kadoma, Kasugai, and Tokyo, Japan. Daily averaged PM2.5 mass concentration data from our sensors were in good agreement with corresponding data from the collocated standard instrument at the Kadoma site, with slopes of 1.07–1.16 and correlation coefficients (R) of 0.90–0.91, and with those of the nearest observatories of the Ministry of the Environment of Japan, at 1.7–4.1 km away from our observation sites, with slopes of 0.97–1.23 and R of 0.89–0.95. Slightly greater slopes were observed in winter than in summer, except at Tokyo, which was possibly due to the photochemical formation of relatively small secondary particles. Under high relative humidity conditions (>70%), the sensor has a tendency to overestimate the PM2.5 mass concentrations compared to those measured by the standard instruments, except at Fukuoka, which is probably due to the hygroscopic growth of particles. This study demonstrates that the sensor can provide reasonable PM2.5 mass concentration data in urban and suburban environments and is applicable to studies on the environmental and health effects of PM2.5.

Copyright © 2018 American Association for Aerosol Research  相似文献   


19.
A very compact cascade impactor with 2 L/min sampling flow rate has been developed. Its dimensions are 8.5 cm L x 5.0 cm W x 11.4 cm H, and it weighs 0.27 kg, with ten impaction stages with aerodynamic cutpoints in the range of 60 nm to 9.6 μm. The top eight stages, collecting particles down to 170 nm in aerodynamic diameter, can be used as a stand-alone impactor with a portable, battery-powered pump. Particle collection efficiencies were obtained with two types of commonly used substrates, aluminum foil and glass fiber filters. Impactor cutpoints with aluminum foil substrates agree well with conventional impactor theory. The efficiency curves are sharp with minimum overlap between them. Thus, the compact impactor design does not compromise its performance, making it suitable for general purpose applications where a lower sampling flow rate provides adequate mass collection. With glass fiber filter substrates, impactor cutpoints are smaller and the efficiency curves are less steep, in particular for the last stages. Also, the collection efficiency curves do not drop to near zero at small Stokes numbers. Instead, excess particle collection efficiency of around 10% is observed for the top six stages, and becomes higher for the last four stages. This is due to the collection of particles by filtration as the impinging jets penetrate the filter substrate. Thus, using glass fiber filter substrates should generally be avoided due to the non-ideal effect on the impactor collection efficiency curves, especially for the last two stages.

Copyright © 2018 American Association for Aerosol Research  相似文献   


20.
To measure size distributions of submicrometer aerosols with an electrical differential mobility analyzer (DMA) requires an inversion procedure. The Knutson (1976) and the Hoppel (1978) inversion procedures were numerically investigated for the case of log-normal aerosol size distributions. It was found that the Hoppel procedure converges to the same result as that given by the Knutson procedure. The computational range for geometric mean diameter ( g) was 0.025-0.25 μm, and for geometric standard deviation (σg) was 1.1–2.4. The inversion error was found to be greater than 10% in certain “forbidden zones” of g and σg values. For the case of an ideal DMA having no lower mobility limit, only one forbidden zone exists, this consisting of small σg values. The boundary of this forbidden zone intercepts the computational range boundaries at σg = 1.25, and σg = 1.62, . These results also apply to an actual DMA when the size distribution of particles larger than the DMA singly charged mobility limit is available a priori. If such information is not available, the concentration of these larger particles is assumed to be zero in performing the inversion. This assumption adds a second forbidden zone, consisting of large σg values and having the intercepts σg = 2.44, and σg = 1.50, . The first forbidden zone remains nearly the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号