首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrical and magnetoelectric properties of magnetoelectric (ME) composites containing barium titanate as electrical component and a mixed Ni-Co-Mn ferrite as the magnetic component are reported. The ME composites with a general formula (x)BaTiO3 + (1 − x)Ni0.94Co0.01Mn0.05Fe2O4 where x varies as 0, 0.55, 0.70, 0.85 and 1 were prepared by standard double sintering ceramic method. The presence of both the phases was confirmed by X-ray diffraction technique. The dc resistivity was measured as a function of temperature. The variation of dielectric constant (?) and loss tangent (tan δ) with frequency (100 Hz-1 MHz) and with temperature was studied. The conduction is explained on the basis of small polaron model based on ac conductivity measurements. The static value of ME conversion factor i.e. dc (ME)H was studied as function of intensity of magnetic field. The changes were observed in dielectric properties as well as ME effect as the molar ratio of the components was varied. A maximum value of ME conversion factor of 610 μV/cm Oe was observed in the case of a composite containing 15 mol% ferrite phase.  相似文献   

2.
A series of nanocrystalline MxZn1−xFe2O4 (M=Ni, Mn and Co; x=0.40-0.60) powders have been successfully prepared via hydrothermal process and characterized by XRD, TEM and IR techniques. The effects of reaction temperature and the initial pH value of the starting suspension solution on the particulate properties such as the particle size and morphology are discussed. IR spectra indicate that there are no hydroxyl in as-prepared NixZn1−xFe2O4 and CoxZn1−xFe2O4 powders, while there are obvious hydroxyl adsorption on the IR spectrum of MnxZn1−xFe2O4 powder.  相似文献   

3.
(1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 (0.1 ≤ x ≤ 0.85) composites are prepared by mixing 1150 °C-calcined BaTi4O9 with 1150 °C-calcined Ba(Zn1/3Ta2/3)O3 powders. The crystal structure, microwave dielectric properties and sinterabilites of the (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics have been investigated. X-ray diffraction patterns reveal that BaTi4O9, ordered and disordered Ba(Zn1/3Ta2/3)O3 phases exist independently over the whole compositional range. The sintering temperatures of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics are about 1240 - 1320 °C and obviously lower than those of Ba(Zn1/3Ta2/3)O3 ceramics. The dielectric constants (?r) and the temperature coefficient of resonant frequency (τf) of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics increase with the increase of BaTi4O9 content. Nevertheless, the bulk densities and the quality values (Q × f) of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics increase with the increase of Ba(Zn1/3Ta2/3)O3 content. The results are attributed to the higher density and quality value of Ba(Zn1/3Ta2/3)O3 ceramics, the better grain growth, and the densification of sintered specimens added a small BaTi4O9 content. The (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramic with x = 0.1 sintered at 1320 °C exhibits a ?r value of 31.5, a maximum Q × f value of 68500 GHz and a minimum τf value of 4.1 ppm/°C.  相似文献   

4.
The microstructures and the microwave dielectric properties of the x(Mg0.95Zn0.05)TiO3-(1 − x) Ca0.8Sm0.4/3TiO3 ceramic system were investigated. In order to achieve a temperature-stable material, we studied a method of combining a positive temperature coefficient material with a negative one. Ca0.8Sm0.4/3TiO3 has dielectric properties of dielectric constant εr ~ 120, Q × f value ~ 13,800 GHz and a large positive τf value ~ 400 ppm/°C. (Mg0.95Zn0.05)TiO3 possesses high dielectric constant (εr ~ 16.21), high quality factor (Q × f value ~ 210,000 at 9 GHz) and negative τf value (− 59 ppm/°C). Sintering at 1300 °C with x = 0.9, 0.9(Mg0.95Zn0.05Ti)O3 − 0.1 Ca0.8Sm0.4/3TiO3 has a dielectric constant (εr) of 22.7, a Q × f value of 124,000 GHz and a temperature coefficient of resonant frequency (τf) of − 6.3 ppm/°C.  相似文献   

5.
(5 − x)BaO-xMgO-2Nb2O5 (x = 0.5 and 1; 5MBN and 10MBN) microwave ceramics prepared using a reaction-sintering process were investigated. Without any calcinations involved, the mixture of BaCO3, MgO, and Nb2O5 was pressed and sintered directly. MBN ceramics were produced after 2-6 h of sintering at 1350-1500 °C. The formation of (BaMg)5Nb4O15 was a major phase in producing 5MBN ceramics, and the formation of Ba(Mg1/3Nb2/3)O3 was a major phase in producing 10MBN ceramics. As CuO (1 wt%) was added, the sintering temperature dropped by more than 150 °C. We produced 5MBN ceramics with these dielectric properties: ?r = 36.69, Qf = 20,097 GHz, and τf = 61.1 ppm/°C, and 10MBN ceramics with these dielectric properties: ?r = 39.2, Qf = 43,878 GHz, and τf = 37.6 ppm/°C. The reaction-sintering process is a simple and effective method for producing (5 − x)BaO-xMgO-2Nb2O5 ceramics for applications in microwave dielectric resonators.  相似文献   

6.
Ferrite (Ni0.6Co0.4Fe2O4) phase, ferroelectric (Pb(Mg1/3Nb2/3)0.67Ti0.33O3) phase and magnetoelectric composites of (x)Ni0.6Co0.4Fe2O4 + (1 − x)Pb(Mg1/3Nb2/3)0.67Ti0.33O3 with x = 0.15, 0.30 and 0.45 were prepared using solid-state reaction technique. Presence of Ni0.6Co0.4Fe2O4 and Pb(Mg1/3Nb2/3)0.67Ti0.33O3 was confirmed using X-ray diffraction technique. The scanning electron microscopic images were used to study the microstructure of the composites. Connectivity scheme present in the magnetoelectric (ME) composites are discussed from the microscopic images. Variation of dielectric constant and dielectric loss with temperature for all the composites was studied. Here we report the effect of Ni0.6Co0.4Fe2O4 mole fraction on connectivity schemes between Ni0.6Co0.4Fe2O4 and Pb(Mg1/3Nb2/3)0.67Ti0.33O3 composite. The variation of magnetoelectric voltage coefficient with dc magnetic field shows peak behaviour. The maximum value of magnetoelectric voltage coefficient of 9.47 mV/cm Oe was obtained for 0.15Ni0.6Co0.4Fe2O4 + 0.85Pb(Mg1/3Nb2/3)0.67Ti0.33O3 composites. Finally we have co-related the effect of Ni0.6Co0.4Fe2O4 content and dielectric properties on magnetoelectric voltage coefficient.  相似文献   

7.
The mixing enthalpies in the 0.8[xB2O3-(1 − x)SiO2]-0.2K2O glassy system with 0 ≤ x ≤ 1 have been deduced from accurate calorimetric measurements of solution enthalpies in acidic solvent at 298 K. The substitution of SiO2 by B2O3 corresponds to a negative enthalpic effect and suggests the absence of some glassy miscibility gap. The mixing enthalpies are of the same order of magnitude as mixing enthalpies usually found in molten salts.  相似文献   

8.
9.
Gel formation was realized by adding citric acid to a solution of La(NO3)3·5H2O, Ca(NO3)2·4H2O, and Fe(NO3)2·9H2O. Perovskite-type (La1−xCax)FeO3 (0 ≤ x ≤ 0.2) was synthesized by firing the gel at 500 °C in air for 1 h. The crystallite size (D1 2 1) decreased with increasing x, while the specific surface area was 6.8-9.4 m2/g and independent of x. The XPS measurement of the (La1−xCax)FeO3 surface indicated that the Ca2+ ion content increased with increasing x, while the Fe ion content was independent of x. Catalytic activity for CO oxidation increased with increasing x.  相似文献   

10.
We report high dielectric tunabilities of (1 − x)Ba(Zr0.2Ti0.8)O3 − x(Ba0.7Ca0.3)TiO3 (BZT-xBCT) (x = 0.15, 0.30, 0.40, 0.45, 0.50, and 0.55) thin films prepared by a sol-gel method. The films show a pure perovskite structure with random orientation. They have moderate dielectric constant ranging from 350 to 500 and low dielectric loss near 3.0% at 1 kHz with 0 V bias at room temperature. The dielectric tunability of the BZT-0.55BCT thin films is up to 65% at 400 kV/cm and 100 kHz. The films exhibit a high optical transmission in the range of 420 nm-1500 nm. Their optical band gap energies are about 3.90 eV.  相似文献   

11.
La modified Pb(Mg1/2W1/2)O3 were prepared by solid-state reaction process, and the sintering behavior, microstructure and microwave dielectric properties were investigated by X-ray powder diffraction (XRD), Raman scattering and HP network analyzer in this paper. A series of single phase perovskite type solid solutions with A-site vacancies (Pb1−3x/2Lax(Mg1/2W1/2)O3 (0 ≤ x ≤ 2/3)) were formed. The solid solution took cubic perovskite type structure (Fm3m) with random distribution of A-site vacancies when 0 < x < 0.5, and tetragonal or orthorhombic structure with the ordering of A-site vacancies when 0.5 ≤ x ≤ 2/3. The dielectric constant and temperature coefficient of resonant frequency decrease with increasing La content. Relatively good combination microwave dielectric properties were obtained for x = 0.56: ?r = 28.7; Q × f = 18098; and τf = −5.8 ppm/°C.  相似文献   

12.
Oxides belonging to the families Ba3ZnTa2−xNbxO9 and Ba3MgTa2−xNbxO9 were synthesized by the solid state reaction route. Sintering temperatures of 1300°C led to oxides with disordered (cubic) perovskite structure. However, on sintering at 1425°C hexagonally ordered structures were obtained for Ba3MgTa2−xNbxO9 over the entire range (0≤x≤1) of composition, while for Ba3ZnTa2−xNbxO9 the ordered structure exists in a limited range (0≤x≤0.5). The dielectric constant is close to 30 for the Ba3ZnTa2−xNbxO9 family of oxides while the Mg analogues have lower dielectric constant of ∼18 in the range 50 Hz to 500 kHz. At microwave frequencies (5-7 GHz) dielectric constant increases with increase in niobium concentration (22-26) for Ba3ZnTa2−xNbxO9; for Ba3MgTa2−xNbxO9 it varies between 12 and 14. The “Zn” compounds have much higher quality factors and lower temperature coefficient of resonant frequency compared to the “Mg” analogues.  相似文献   

13.
The dielectric relaxation phenomenon has been studied in lanthanum modified lead zirconate titanate ceramics in the high temperature paraelectric phase. The high temperature dielectric response revealed an anomalous behavior, which is characterized by an increase of the real component of the dielectric permittivity with the increase of the temperature. At the same time, a similar behavior, with very high values, has been observed in the imaginary component of the dielectric permittivity, which can be associated with conduction effects related to the conductivity losses. The frequency and temperature behavior of the complex dielectric permittivity has been analyzed considering the semi-empirical complex Cole-Cole equation. The activation energy value, obtained from the Arrhenius’ dependence for the relaxation time, was found to decreases with the increase of the lanthanum concentration and has been associated with single-ionized oxygen vacancies. The short-range hopping of oxygen vacancies is discussed as the main cause of the dielectric relaxation.  相似文献   

14.
Two series of mixed oxides with formula [Eu2−xMx][Sn2−xMx]O7−3x/2 (M = Mg or Zn) have been synthesized. The study by X-ray diffraction and Fourier transform infrared spectroscopy shows that the solids obtained are new non-stoichiometric solid solutions with the pyrochlore type structure. For both series a decrease of the cell parameter is observed when the degree of substitution, x, increases. The structural refinements (X-ray studies) were achieved in the space group Fd-3m, no. 227 (origin at center -3m) by using the Fullprof software. The Rietveld refinements show that the divalent cations M2+ (Mg2+, Zn2+) substitute isomorphically for Eu3+ and Sn4+ ions producing vacancies in the anionic sublattice.  相似文献   

15.
Li(1−2x)NixTiO(PO4) oxyphosphates with 0 ≤ x ≤ 0.10 crystallize in the orthorhombic system with the space group Pnma, those with 0.10 < x ≤ 0.25 crystallize in the monoclinic system with the space group P21/c and compositions with 0.25 < x < 0.50 present a mixture of the limit of the solid solution Li0.50Ni0.25TiO(PO4) and Ni0.50TiO(PO4). The structure of the compositions 0 ≤ x ≤ 0.25 is based on a three-dimensional anionic framework constructed of chains of alternating TiO6 octahedra and PO4 tetrahedra, with the lithium and nickel atoms in the cavities in the framework. The dominant structural units in the compositions are chains of tilted corner-sharing TiO6 octahedra running parallel to one of the axis. The oxygen atoms of the shared corners, not implied in (PO4) tetrahedra, justify the oxyphosphate designation. Titanium atoms are displaced from the geometrical center of the octahedra resulting in alternating long (≈2.25 Å) and short (≈1.71 Å) TiO(1) bonds. The four remaining TiO bond distances have intermediate values ranging from 1.91 to 2.06 Å.  相似文献   

16.
BST thin films have been investigated as potential candidates for use in frequency agile microwave circuit devices. Stoichiometric (Ba1 − xSrx)TiO3 (BST) thin films have been prepared on Pt/SiO2/Si substrates using sol-gel method. The BST films were characterized by X-ray fluorescence (XRF) spectroscopy analysis, X-ray diffraction (XRD), scanning electron microscope (SEM) and electrical measurements. The relationships of processing parameters, microstructures, and dielectric properties are discussed. The results show that the films exhibit pure perovskite phase through rapid thermal anneal at 700 °C and their grain sizes are about 20-40 nm. The dielectric constants of BST5, BST10, BST15 and BST20 are 323, 355, 382 and 405, respectively, at 80 kHz.  相似文献   

17.
The pseudo-binary TiO2-FeSbO4 system was investigated by means of thermogravimetric analysis below 1673 K in O2. Rutile-type solid solutions were synthesised at 1373 K in O2 by means of a solid state reaction between the two pure end members TiO2 (rutile) and FeSbO4 mixed in stoichiometric amounts. Thermal stability of the (Ti2xFe1−xSb1−x)O4 solid solution increases with rutile content; equimolar (Ti1.00Fe0.50Sb0.50)O4 solid solutions decompose at about 1673 K forming a TiO2-enriched solid solution and FeSbO4, that subsequently decomposes into Fe2O3 (hematite) and a volatile Sb oxide, probably Sb4O6. For compositions characterised by higher Ti content the decomposition temperature is higher than 1673 K.  相似文献   

18.
The binary lead-free piezoelectric ceramics with the composition of (1 − x)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3 were synthesized by conventional mixed-oxide method. The phase structure transformed from rhombohedral to tetragonal phase in the range of 0.16 ≤ x ≤ 0.20. The grain sizes varied with increasing the Bi0.5K0.5TiO3 content. Electrical properties of ceramics are significantly influenced by the Bi0.5K0.5TiO3 content. Two phase transitions at Tt (the temperature at which the phase transition from rhombohedral to tetragonal occurs) and Tc (the Curie temperature) were observed in all the ceramics. Adding Bi0.5K0.5TiO3 content caused the variations of Tt and Tc. A diffuse character was proved by the linear fitting of the modified Curie-Weiss law. Besides, the ceramics with homogeneous microstructure and excellent electrical properties were obtained at x = 0.18 and sintered at 1170 °C. The piezoelectric constant d33, the electromechanical coupling factor Kp and the dielectric constant ?r reached 144 pC/N, 0.29 and 893, respectively. The dissipation factor tan δ was 0.037.  相似文献   

19.
In this work, the piezoelectric ceramic system of Pb[(Zr1−xTix)0.74(Mg1/3Nb2/3)0.20(Zn1/3Nb2/3)0.06]O3, 0.47≤x≤0.57, with composition close to the morphotropic phase boundary, was studied. From the results of X-ray diffraction and piezoelectric measurement, ceramics near x=0.51 were found at the morphotropic phase boundary (MPB) between the tetragonal and pseudocubic perovskite. The planar coupling factor (kp=0.72) is high at compositions near the MPB, but the mechanical quality factor (Qm=75) is low. The calculation of the diffuseness of phase transition shows that the region of phase coexistence of this system is broader than that of the ternary system.  相似文献   

20.
La2−xBaxMo2O9−x/2 (x ≤ 0.18) have been prepared by solid state reaction method. The lattice parameter of La2−xBaxMo2O9−x/2 (x ≤ 0.18) determined by XRD data refinement shows a linear dependence on the dopant Ba content x. For the specimen with a La/Ba molar ratio of 0.18-0.2, additional reflection of secondary phase exists in the XRD pattern, so the value of solubility limit for Ba in La2Mo2O9 is defined in range of 0.18 < x < 0.2. As the replacement degree of La3+ by Ba2+ increases, the bulk conductivity of La2−xBaxMo2O9−x/2 (x ≤ 0.18) decreases initially and then increases, a minimum value at La1.9Ba0.1Mo2O8.95 exists. Hebb-Wagner studies in argon atmosphere, which use an oxide-ion blocking electrode, show that La2−xBaxMo2O9−x/2 (x ≤ 0.18) are predominantly oxide-ion conducting in the temperature ranging from 773 to 1173 K. The average thermal expansion coefficient of La1.84Ba0.16Mo2O8.92 determined by high-temperature XRD was deduced as great as 17.5 × 10−6 K−1 between 298 and 1173 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号