首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Materials Research Bulletin》2013,48(11):4791-4796
The carbon-coated Fe3O4 nanoflakes were synthesized by partial reduction of monodispersed hematite (Fe2O3) nanoflakes with carbon coating. The carbon-coated Fe3O4 nanoflakes were characterized by X-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and galvanostatic charge/discharge measurements. It has been demonstrated that Fe2O3 can be completely converted to Fe3O4 during the reduction process and carbon can be successfully coated on the surface of Fe3O4 nanoflakes, forming a conductive matrix. As anode material for lithium-ion batteries, the carbon-coated Fe3O4 nanoflakes exhibit a large reversible capacity up to 740 mAh g−1 with significantly improved cycling stability and rate capability compared to the bare Fe2O3 nanoflakes. The superior electrochemical performance of the carbon-coated Fe3O4 nanoflakes can be attributed to the synthetic effects between small particle size and highly conductive carbon matrix.  相似文献   

2.
A layer-by-layer approach has been developed to synthesize ZnO/SnO2 composite nanowire arrays on copper substrate. ZnO nanowire arrays have been first prepared on copper substrate through seed-assisted method, and then, the surface of ZnO nanowires have been modified by the polyelectrolyte. After oxidation-reduction reaction, SnO2 layer has been deposited onto the surface of ZnO nanowires. The as-synthesized ZnO/SnO2 composite nanowire arrays have been applied as anode for lithium-ion batteries, which show high reversible capacity and good cycling stability compared to pure ZnO nanowire arrays and SnO2 nanoparticles. It is believed that the improved performance may be attributed to the high capacity of SnO2 and the good cycling stability of the array structure on current collector.  相似文献   

3.
SnO-carbon nanotube composite was synthesized by a sol-gel method. The electrochemical behavior of the composite using an anode active material in lithium-ion batteries was investigated. It was found that the composite showed enhanced anode performance compared with the unsupported SnO or carbon nanotube (CNT). The capacity fade of the composite electrode was reduced over unsupported SnO or CNT. We attribute the results to the conductivity and ductility of the CNT matrix, and the high dispersion of SnO.  相似文献   

4.
This paper reports a large-scale production route for graphene/TiO2 nanocomposites using water-based in situ precipitation method. In this method, freshly prepared graphene oxides/TiO2 obtained by precipitating Ti(SO4)2 with NH3H2O was subjected to heat treatment in the presence of N2, which resulted in the formation of graphene/TiO2 nanocomposites. Graphene/TiO2 composites prepared by our method were found to be suitable as anode materials for lithium ion batteries because of its stable cycling performance and high capacity.  相似文献   

5.
Micro-scaled Sn-Sb-Ni alloy composite was synthesized from oxides of Sn, Sb and Ni via carbothermal reduction. The phase composition and electrochemical properties of the Sn-Sb-Ni alloy composite anode material were studied. The prepared alloy composite electrode exhibits a high specific capacity and a good cycling stability. The lithiation capacity was 530 mAh g−1 in the first cycle and maintained at 370-380 mAh g−1 in the following cycles. The good electrochemical performance may be attributed to its relatively large particle size and multi-phase characteristics. The former reason leads to the lower surface impurity and thus the lower initial capacity loss, while the latter results in a stepwise lithiation/delithiation behavior and a smooth volume change of electrode in cycles. The Sn-Sb-Ni alloy composite material shows a good candidate anode material for the rechargeable lithium ion batteries.  相似文献   

6.
Polycrystalline tin oxide nanotubes have been prepared by a layer-by-layer technique on carbon nanotubes template. Firstly, the surface of carbon nanotubes was modified by polyelectrolyte. Then, a uniform layer of tin oxide nanoparticles was formed on the positive charged surface of carbon nanotubes via a redox process. At last, the polycrystalline tin oxide nanotubes were synthesized after calcination at 650 °C in air for 3 h. The as-synthesized polycrystalline nanotubes with large surface area exhibit finer lithium storage capacity and cycling performance, which shows the potentially interesting application in lithium-ion battery.  相似文献   

7.
Novel nickel-cobalt oxides/carbon nanoflakes with Ni/Co molar ratio = 1:1 and 1:2 have been synthesized by a convenient hydrothermal method followed by a simple calcination process. X-ray diffraction results showed that the composites were composed of NiO, Co3O4, and carbon. Scanning electron microscope measurements demonstrated that the composites were flakes less than 100 nm in thickness, and the corresponding energy dispersive spectroscopy mapping showed that the carbon was distributed homogeneously in the composites. The electrochemical results showed that the composite electrodes exhibited low initial coulombic efficiency and excellent charge-discharge cycling stability. Additionally, the effect of different Ni/Co molar ratios on the electrochemical properties of the composites was investigated, and better performance was obtained for the sample with a Ni/Co molar ratio of 1:2.  相似文献   

8.
Composite Sn-SnSb nano-crystalline films were fabricated on Cu substrate by an electrochemical deposition process. X-ray diffraction, scanning electron microscopy, and galvanostatic cell cycling were used to characterize the structures and electrochemical properties of the films. The as-deposited films consist of only Sn/SnSb composite nanocrystals with a rather dense morphology. The Sn-SnSb composite electrode gives rise to a very small (6%) initial capacity loss and a rather high specific capacity of about 650 mAh/g, which is significantly higher than the values reported in the literature. The coulombic efficiency during charge-discharge cycles is close to 100%.  相似文献   

9.
Hydrothermal synthesis has been introduced to fabricate NiO precursor at different temperatures, then nanostructured NiO with a distinct flake-like morphology was obtained via heating at low temperature. The NiO nanoflakes are 50-80 nm in width and 20 nm in thickness. The electrochemical capacitive characterization of the as-prepared NiO was studied in 2 M KOH electrolyte solution. The as-prepared NiO exhibits excellent cycle performance and keeps 91.6% initial capacity over 1000 charge-discharge cycles. Electrochemical impedance spectroscopy study reveals that the NiO electrode is controlled by the mass transfer limitation, and its internal resistance is 0.2 Ω. A specific capacitance approximate to 137.7 F g−1 could be achieved at the current density of 0.2 A g−1 in the potential window of 0-0.46 V in 2 M KOH electrolyte solution, due to higher surface area of NiO nanoflakes, which facilitates transport of electrolyte ions during rapid charge/discharge process. Due to higher surface area of NiO nanoflakes, which facilitates transport of electrolyte ions during rapid charge/discharge process.  相似文献   

10.
Mesoporous CuO was successfully synthesized via thermal decomposition of CuC2O4 precursors. These products had ring-like morphology, which was made up of nanoparticles with the average diameter of 40 nm. The electrochemical experiments showed that the mesoporous CuO decreased the overvoltage of the electrode and increased electron transference in the measurement of dopamine.  相似文献   

11.
Doped polyaniline with LiPF6 is electrosprayed onto aluminum foil using electrospinning technique, and evaluated as cathode active material for application in room-temperature lithium batteries. Doping level is characterized using FTIR and UV-vis spectroscopy. In FTIR Spectra, characteristic peaks of PANI are shifted to lower bands as a result of doping which indicates the effectiveness of doping. Doping level is also confirmed by UV-vis spectra. Surface morphology of the cathode is studied using scanning electron microscope. Electrochemical evaluation of the cell using electrosprayed PANI as cathode show good cycling properties. The cell delivers a high discharge value of 142.5 mAh/g which is about 100% of theoretical capacity, and the capacity is lowered during cycle and reached 61% of theoretical capacity after 50 cycles. The cell delivers a stable but lower discharge capacity at higher C-rates.  相似文献   

12.
The multi-walled carbon nanotube/SnO2 core-shell structures were fabricated by a wet chemical route. The electrochemical performance of the core-shell structures as anode materials of lithium-ion batteries was investigated. The initial discharge capacity and reversible capacity are up to 1472.7 and 1020.5 mAh g−1, respectively. Moreover, the reversible capacity still remains above 720 mAh g−1 over 35 cycles, and the capacity fading is only 0.8% per cycle. Such high capacities and good cyclability are attributed to SnO2 network structures, excellent mechanical property and good electrical conductivity of the multi-walled carbon nanotubes.  相似文献   

13.
The performance of Ce1−xFexO2−δ (x = 0.1, 0.2) was studied as anode for solid oxide fuel cell running on methane in this paper. The oxides were prepared by the citrate method. The polarization resistance of electrode was measured in the two-electrode symmetric cell configuration and an electrolyte-supported cell was prepared to assess Ce0.8Fe0.2O2−δ anode performance of running on methane fuel. The results suggested that Ce0.8Fe0.2O2−δ has a significant effect on the electrochemical oxidation of methane. A maximum power density of single cell was 52 mW/cm2 at 800 °C and little carbon deposition was shown on the anode operating in humidified methane for 20 h. Therefore, Ce0.8Fe0.2O2−δ is a promising candidate for anode of solid oxide fuel cell running on methane fuel, which breaks a new path to solve the problem of carbon deposition in methane.  相似文献   

14.
A simple CTAB-assisted sol-gel technique for synthesizing nano-sized Li4Ti5O12 with promising electrochemical performance as anode material for lithium ion battery is reported. The structural and morphological properties are investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemical performance of both samples (with and without CTAB) calcined at 800 °C is evaluated using Swagelok™ cells by galvanostatic charge/discharge cycling at room temperature. The XRD pattern for sample prepared in presence of CTAB and calcined at 800 °C shows high-purity cubic-spinel Li4Ti5O12 phase (JCPDS # 26-1198). Nanosized-Li4Ti5O12 calcined at 800 °C in presence of CTAB exhibits promising cycling performance with initial discharge capacity of 174 mAh g−1 (∼100% of theoretical capacity) and sustains a capacity value of 164 mAh g−1 beyond 30 cycles. By contrast, the sample prepared in absence of CTAB under identical reaction conditions exhibits initial discharge capacity of 140 mAh g−1 (80% of theoretical capacity) that fades to 110 mAh g−1 after 30 cycles.  相似文献   

15.
A new synthetic route, i.e. the radiated polymer gel (RPG) method, has been developed and demonstrated for the production of LiCoO2 powders. The process involved two processes: (1) obtaining a gel by polymerizing a mixed solution of an acrylic monomer and an aqueous solution of lithium and cobalt salts under γ-ray irradiation conditions and (2) obtaining LiCoO2 powders by drying and calcining the gel. Thermogravimetric analysis (TGA), X-ray diffraction (XRD) and electron scanning microscopy (SEM) were employed to study the reaction process and the structures of the powders. Galvanostatic cell cycling, cyclic voltammetry and ac impedance spectroscopy were used to evaluate the electrochemical properties of the LiCoO2 powders. It was found that a pure phase of LiCoO2 can be obtained at the calcination temperature of 800 °C. Both the particle size (micrometer range) and specific charge/discharge capacity of an RPG-LiCoO2 powder increase with increasing the concentration of its precursor solution.  相似文献   

16.
Using hydrothermal method, Fe3O4/graphene nanocomposite is prepared by synthesizing Fe3O4 particles in graphene. The synthesized Fe3O4 is nano-sized sphere particles (100–200 nm) and uniformly distributed on the planes of graphene. Fe3O4/graphene nanocomposite as anode material for lithium ion batteries shows high reversible specific capacity of 771 mAh g−1 at 50th cycle and good rate capability. The excellent electrochemical performance of the nanocomposite can be attributed to the high surface area and good electronic conductivity of graphene. Due to the high surface area, graphene can prevent Fe3O4 nanoparticles from aggregating and provide enough space to buffer the volume change during the Li insertion/extraction processes in Fe3O4 nanoparticles.  相似文献   

17.
Nanostructured Mn-Ni-Co oxide composites (MNCO) were prepared by thermal decomposition of the precursor obtained by chemical co-precipitation of Mn, Ni and Co salts. The chemical composition and morphology were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). The electrochemical capacitance of MNCO electrode was examined by cyclic voltammetry, impedance and galvanostatic charge-discharge measurements. The results showed that MNCO electrode exhibited the good electrochemical characteristics. A maximum capacitance value of 1260 F g−1 could be obtained within the potential range of −0.1 to 0.4 V versus saturated calomel electrode (SCE) in 6 mol L−1 KOH electrolyte.  相似文献   

18.
Ni-P-carbon nanotube (CNT) composite coatings were fabricated successfully from a suspension of CNT in an electroless bath. The microhardness and corrosion behavior of the composite coatings were investigated. The electrochemical properties of the composite coatings were studied using electrochemical workstation system. The corrosion behavior of the amorphous Ni-P-CNT composite coatings was evaluated by polarization curves and electrochemical impedance spectroscopy in 0.1 mol/l NaCl solution at room temperature. It was noted that the amorphous Ni-P-CNT composite coatings provided higher corrosion resistance than the amorphous Ni-P coating. The mechanism of improvement of the electrochemical properties of the electroless composite coatings was also discussed.  相似文献   

19.
P25/graphene nanocomposites were successful synthesized in a water-ethanol solvent under hydrothermal conditions. During the process of the reduction of GO into graphene (GR), the P25 nanoparticles were decorated on graphene sheets simultaneously. Moreover, the GR content in the as-synthesized nanocomposites can be easily adjusted by changing the dosage of P25. The interesting P25/GR nanocomposites were found to be a promising anode material for lithium-ion batteries and showed significantly enhanced Li-ion insertion/extraction performance. The optimal weight percentage of GR was found to be 29.9%, which resulted in a high capacity of 282.8 mAh g−1 after 50 cycles at a current rate of 0.5 C. The improved capacity may be attributed to the synergetic effect between graphene sheets and P25 nanoparticles.  相似文献   

20.
A chemical route has been used to synthesize composite oxides of zinc and tin. An ammonia solution was added to equal amounts of zinc and tin chloride solutions of same molarities to obtain precipitates. Three portions of these precipitates were annealed at 400, 600 and 800 °C, respectively. Results of X-ray diffraction and transmission electron microscopy clearly depicted coexistence of phases of nano-sized SnO2, ZnO, Zn2SnO4 and ZnSnO3. The effect of annealing on structure, morphology and sensing has been observed as well. It has been observed that annealing promoted growth of Zn2SnO4 and ZnSnO3 at the expense of zinc. The sensing response of fabricated sensors from these materials to 250 ppm LPG and ethanol has been investigated. The sensor fabricated from powder annealed at 400 °C responded better to LPG than ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号