首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A family of Sr-doped perovskite compounds Ln1−xSrxCoO3−δ (Ln = La3+, Pr3+ and Nd3+; x > 0.60), were prepared by sol-gel chemistry and reaction at 1100 °C under 1 atm of oxygen. This structural family has been shown to be present only for rare earth ions larger than Sm3+ and an upper limit of Sr2+ solubility in these phases was found to exist between x = 0.90 and 0.95. X-ray diffraction shows oxygen-deficient, simple cubic (Pm-3m) perovskite crystal structures. The combination of electron and powder neutron diffraction reveals that oxygen vacancy ordering occurs, leading to a tetragonal (P4/mmm) superstructure and a doubling of the basic perovskite unit along the crystallographic c-axis. No additional Ln3+/Sr2+ cation ordering was observed.  相似文献   

2.
In order to identify new cathode compositions for the high temperature solid oxide fuel cell, we have investigated the effect of the trivalent cations Al and Ga at the Mn site of the well-studied cathode composition La0.84Sr0.16MnO3. All the compositions have been prepared by the low temperature citrate-nitrate auto-ignition process and sintered within the temperature range of 1150-1350 °C for 4 h. In order to understand the compatibility of the prepared samples as alternative cathode materials, we compared their electrical conductivity and thermal expansion coefficient with those of La0.84Sr0.16MnO3 and yttria-stabilized zirconia. A 10 mol% Al doped La0.84Sr0.16MnO3 composition exhibited a conductivity of around 122 S cm−1 at 950 °C and a thermal expansion coefficient of 11.04 × 10−6 K with a minimum reactivity towards yttria-stabilized zirconia. Though the conductivity of the new composition is lower than that of La0.84Sr0.16MnO3 (169 S cm−1 at 950 °C), it is still high enough for use as a cathode material.  相似文献   

3.
Perovskite type oxides Ln0.6Sr0.4Co0.8Mn0.2O3−δ (Ln=La, Gd, Sm, or Nd) have been prepared by the solid state reaction of corresponding oxides. The crystal parameters of the compositions were determined by XRD powder diffraction, which revealed that all the compositions have orthorhombic structure. The reaction test of all samples with Ce0.8Gd0.2O1.9 was carried out at 1200 °C for 48 h, and no reaction product was detected by XRD. The change in mass of La0.6Sr0.4Co0.8Mn0.2O3−δ as a function of temperature was determined by thermogravimetric analysis (TGA). The electrical conductivity of the sintered samples were measured as a function of temperature from 200 to 1000 °C. The highest conductivity of about 1400 S cm−1 was found in La0.6Sr0.4Co0.8Mn0.2O3−δ. The cathodic polarization of these oxides electrodes deposited on Ce0.8Gd0.2O1.9 tablet was studied at 500-800 °C in air.  相似文献   

4.
The composite cathodes La2NiO4+δ-La0.6Sr0.4Co0.2Fe0.8O3−δ were prepared for intermediate temperature solid oxide fuel cells. La2NiO4+δ and La0.6Sr0.4Co0.2Fe0.8O3−δ powders were synthesized successfully by glycine-nitrate process. The effect of composition on the electrochemical performance of the composite electrodes was studied by AC impedance spectroscopy and the optimal calcination temperature was determined when the electrode showed the minimum area specific resistance. The addition of La0.6Sr0.4Co0.2Fe0.8O3−δ to La2NiO4+δ electrode decreased the area specific resistance remarkably. The composite electrode with 30 wt% La0.6Sr0.4Co0.2Fe0.8O3−δ calcined at 1150 °C exhibited the lowest area specific resistance of 0.125 Ω cm2, about 60% of the area specific resistance of La2NiO4+δ electrode at 700 °C in air. The composite electrode with 30 wt% La0.6Sr0.4Co0.2Fe0.8O3−δ can be a promising cathode material through the evaluation of electrical conductivity and thermal expansion behavior.  相似文献   

5.
Synthesis and characterization of strontium-lanthanum apatites   总被引:1,自引:0,他引:1  
Two series of strontium-lanthanum apatites, Sr10−xLax(PO4)6−x(SiO4)xF2 and Sr10−xLax(PO4)6−x(SiO4)xO with 0 ≤ x ≤ 6, were synthesized by solid state reaction in the temperature range of 1200-1400 °C. The obtained materials were characterized by powder X-ray diffraction, infrared absorption spectroscopy and solid 31P Nuclear Magnetic Resonance. Pure solid solutions were obtained within a limited range of unsubstituted phosphate and silicate apatites. A variation of the lattice parameters was observed, with an increase of a and a decrease of c parameters, related to the radius of the corresponding substituted ions.  相似文献   

6.
The crystal structure, thermal expansion rate, electrical conductivity and electrochemical performance of Sm0.5Sr0.5MxCo1−xO3−δ (M = Fe, Mn) have been investigated. Two crystal structures have been observed in the specimens of Sm0.5Sr0.5FexCo1−xO3−δ (SSFC) at room temperature, the perovskite structure of SSFC has an orthorhombic symmetry for 0 ≤ x ≤ 0.4 and a cubic symmetry for 0.5 ≤ x ≤ 0.9. The specimens of Sm0.5Sr0.5MnxCo1−xO3−δ (SSMC) crystallize in an orthorhombic structure. The adjustment of thermal expansion rate to electrolyte, which is one of the main problems of SSC, can be achieved to lower TEC values with more Fe and Mn substitution. Especially, Sm0.5Sr0.5Mn0.8Co0.2O3−δ exhibits good thermal compatibility with La0.8Sr0.2Ga0.8Mg0.2O3. High electrical conductivities are obtained for all the specimens and they demonstrate above 100 S/cm at 800 °C in SSFC system. The polarization resistance increases with increasing Mn content, Nevertheless, the polarization resistance of SSFC increases with increasing Fe content, but when the amount of Fe reaches to 0.4, the maximum is obtained while the resistance will decrease when the amount of Fe reaches above 0.4. Sm0.5Sr0.5Fe0.8Co0.2O3−δ electrode exhibits high catalytic activity for oxygen reduction operating at temperature from 700 to 800 °C.  相似文献   

7.
Sr and Mg doped lanthanum gallate perovskites (La1−xSrxGa1−yMgyO3−δ, shortened as LSGM-XY where X and Y are the doping levels in mole percentage (mol%) at the La- or A-site and the Ga- or B-site, respectively) are promising electrolyte materials for intermediate temperature solid oxide fuel cells (SOFCs). In this study, we have investigated the primary perovskites as well as the secondary phases formed in terms of doping content changes and A/B ratio variations in these materials. Fifteen powder compositions (three doping levels, X=Y=0, 0.1, and 0.2 mol; and five A/B ratios 0.95, 0.98, 1.00, 1.02, and 1.05) were synthesized by the glycine-nitrate combustion process (GNP). These powders were equilibrated by calcining at 1500 °C for 9 h prior to crystalline phase characterization by X-ray powder diffraction (XRD). From the results of this study and the available phase diagrams in the literature on constituent binary oxide systems, we propose a crystalline phase diagram of the La2O3-SrO-Ga2O3-MgO quaternary system at elevated temperature (1500 °C).  相似文献   

8.
La1−xSrxCuO2.5−δ (LSCu), which exhibit excellent electrical conductivity and oxygen vacancies were investigated as potential cathode materials for solid oxide fuel cell (SOFC) applications. The structure stability, electrical conductivity, cathodic overpotential, and the reactivity with yttria-stabilized zirconia (YSZ) were examined in this study. It was found that the LSCu perovskite was obtained only when the addition of strontium fell in the range between 15 and 30%. With more than 20% of strontium addition, this material showed excellent electrical property and immunity to the reaction with YSZ at 800 °C. The conductivities of LSCu were as high as 900 S/cm at 600 °C, and 800 S/cm at 800 °C. The cathodic overpotential of this material was approximately 3.8 and 10.6 mV at a current density of 100 mA/cm2 at 850 and 750 °C, respectively. These properties are superior to Sr-doped lanthanum manganite (LSM), which is the state-of-the-art cathode material of SOFCs.  相似文献   

9.
La-doped Ba0.6Sr0.4Co0.6Fe0.4O3−δ perovskites were synthesized and investigated as new cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs). The structural characteristics, thermal expansion coefficient (TEC), electrical conductivity and electrochemical properties were characterized by X-ray diffraction (XRD), dilatometry, DC four-terminal method, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The TEC of (Ba0.6Sr0.4)0.9La0.1Co0.4Fe0.6O3−δ (BSLCF) was 14.9 × 10−6 K−1 at 30-800 °C, lower than Ba0.6Sr0.4Co0.4Fe0.6O3−δ (BSCF) of 15.6 × 10−6 K−1. The electrical conductivity of BSCF was improved by La-doping, e.g. a value of 122 S cm−1 for BSLCF vs. 52 S cm−1 for BSCF at 500°C, respectively. In addition, La-doping enhanced the electrochemical activity for oxygen reduction reaction. The polarization resistance of BSLCF was 0.18 Ω cm2 at 700 °C, about a quarter lower than that of BSCF. The improved electrochemical performance of BSLCF should be ascribed to the higher conductivity as well as the improved oxygen adsorption/desorption and oxygen ions diffusion processes.  相似文献   

10.
Complex oxides La1.95Ca0.05M2O7−δ (M = Ce, Zr) were prepared by sol-gel method and characterized by thermal analysis (TG-DTA), X-ray diffraction (XRD). On the sintered complex oxides as solid electrolyte, the conductivity was measured in various atmospheres, and ammonia was synthesized from nitrogen and hydrogen at atmospheric pressure in the solid states proton conducting cell reactor by electrochemical methods. The rates of ammonia formation were up to 2.0 × 10−9 mol s−1 cm−2 for La1.95Ca0.05Zr2O7−δ and 1.3 × 10−9 mol s−1 cm−2 for La1.95Ca0.05Ce2O7−δ, respectively, at 520 °C.  相似文献   

11.
The SOFC interconnect materials La0.7Ca0.3Cr1−xO3−δ (x = 0-0.09) were prepared using an auto-ignition process and characterized. XRD analysis indicated that all the samples displayed a pure perovskite phase after sintered at 1400 °C for 4 h. The relative density increased from 67% (x = 0) to 95.8% (x = 0.02) and reached to about 97% (x > 0.02), as sintered at 1400 °C for 4 h. The electrical conductivity in air dramatically increased and then lowered slowly with x values. The sample with 0.03 Cr deficiency got a maximum conductivity of 61.7 S cm−1 at 850 °C in air, which is about three times as high as that of the sample with no Cr deficiency (20.6 S cm−1). The sample with 0.06 Cr deficiency exhibited the highest electrical conductivity of 3.9 S cm−1 at 850 °C in pure H2. The thermal expansion coefficient (TEC) were below 11.8 × 10−6 K−1 for samples of x = 0.02-0.09, that was of well compatibility with other components in SOFCs. Results indicate that the materials with 0.02-0.06 Cr deficiency have high properties and are much suitable for SOFC interconnect.  相似文献   

12.
A single phase perovskite Y0.08Sr0.92FexTi1−xO3−δ (x = 0.05, 0.1,0 0.20, 0.25, 0.40, and 0.50) was fabricated at 1400 °C in air by a solid state reaction method and its electrical conductivity and electrochemical properties as an anode were investigated as a function of the Fe content. Doping with Y for Sr allowed the SrFexTi1−xO3−δ perovskite to be stable at 800 °C in a reducing atmosphere. At 900 °C, metallic Fe precipitated and the stability of the perovskite phase under a reducing atmosphere decreased as the Fe content increased. The conductivity of Y0.08Sr0.92FexTi1−xO3−δ (x = 0.40) was greater than that of the x = 0.20 sample. The conductivity of Y0.08Sr0.92FexTi1−xO3−δ was found to be 2 × 10−1 Scm−1 at 800 °C in H2. Sintering the Y0.08Sr0.92FexTi1−xO3−δ anode at 1200 °C was found to be optimum to obtain not only good interfacial adhesion, but also a fine grain structure. The Y0.08Sr0.92Fe0.25Ti0.75O3−δ anode exhibited the lowest polarization resistance (0.7 and 1.8 Ωcm2 at 800 and 700 °C).  相似文献   

13.
Up to 10 at.% of copper readily substitutes for cerium in ceria. It is found that at oxygen partial pressures between 0.21 atm and 10−5 atm, CuxCe1−xO2−δ (0 ≤ x ≤ 0.10) solid solution behave as an oxide-ion electrolyte. Interestingly, Cu0.10Ce0.90O2−δ exhibits the oxide-ion conductivity of ca. 10−4 Ω−1 cm−1 at 600 °C at an oxygen partial pressure of 10−5 atm.  相似文献   

14.
Ba1−ySryLa4−xTbx(WO4)7 (x = 0.02-1.2, y = 0-0.4) phosphors were prepared via a solid-state reaction and their photoluminescence properties were investigated. An analysis of the decay behavior indicates that the energy migration between Tb3+ ions is conspicuous in the 5D3 → 7F4 transition due to the cross-relaxation in BaLa4(WO4)7. A partial substitution of Ba2+ by Sr2+ can not only enhance the emission intensity but also increase the solid solubility of Tb3+ in Ba1−ySryLa4−xTbx(WO4)7. The emission intensity of the 5D4 → 7FJ (J = 4, 5, 6) transitions can be enhanced by increasing Sr2+ and Tb3+ concentrations, with the optimal conditions being x = 1.2, y = 0.4 (Ba0.6Sr0.4La2.8Tb1.2(WO4)7). Under near-UV excitation at 379 nm, the CIE color coordinates of Ba1−ySryLa4−xTbx(WO4)7 vary from blue (0.212, 0.181) at x = 0.04, y = 0, to green (0.245, 0.607) at x = 1.2, y = 0.4.  相似文献   

15.
The Er2+xTi2−xO7−δ (x = 0.096; 35.5 mol% Er2O3) solid solution and the stoichiometric pyrochlore-structured compound Er2Ti2O7 (x = 0; 33.3 mol% Er2O3) are characterized by X-ray diffraction (phase analysis and Rietveld method), thermal analysis and optical spectroscopy. Both oxides were synthesized by thermal sintering of co-precipitated powders. The synthesis study was performed in the temperature range 650-1690 °C. The amorphous phase exists below 700 °C. The crystallization of the ordered pyrochlore phase (P) in the range 800-1000 °C is accompanied by oxygen release. The ordered pyrochlore phase (P) exists in the range 1000−1200 °C. Heat-treatment at T ≥ 1600 °C leads to the formation of an oxide ion-conducting phase with a distorted pyrochlore structure (P2) and an ionic conductivity of about 10−3 S/cm at 740 °C. Complex impedance spectra are used to separately assess the bulk and grain-boundary conductivity of the samples. At 700 °C and oxygen pressures above 10−10 Pa, the Er2+xTi2−xO7−δ (x = 0, 0.096) samples are purely ionic conductors.  相似文献   

16.
Oxyapatites are very promising materials in terms of ionic conductivity. They can be considered as a potential electrolyte for Solid Oxide Fuel Cells (SOFC). Doped silicated rare earth apatites with formula La9.33−xCax(SiO4)6O2−x/2 (0 ≤ x ≤ 1) have been prepared by solid state reaction at high temperature in order to determine the influence of anionic vacancies on the electrical properties of the material. The incorporation of calcium in the structure has been checked by characterizations of the powders (X-ray diffraction, helium pycnometry). The cell parameters of the hexagonal apatite were refined. Samples were sintered at 1550 °C. Electrical properties of each composition have been studied between 280 and 620 °C by the complex impedance method. The evolution of the bulk conductivity and of the activation energy with the substituting ratio gives information on the conductivity mechanism in these materials. An improvement of ionic conductivity about one order of magnitude has been observed for low calcium substitution ratios.  相似文献   

17.
Scheelite-type Ca1−xSmxMoO4+δ electrolyte powders were prepared by the sol-gel auto-combustion process. The crystal structure of the samples was determined by employing the techniques of X-ray diffraction (XRD). According to the XRD analysis, the formed continuous series of Ca1−xSmxMoO4+δ (0 ≤ x ≤ 0.3) solid solutions had the structure of tetragonal scheelite, and the lattice parameters increased with increasing x in the Sm-substituted system. Results of sinterability and electrochemical testing revealed that the performances of Sm-doped calcium molybdate were superior to that of pure CaMoO4. Ca1−xSmxMoO4+δ ceramics show higher sinterability, and the Ca0.8Sm0.2MoO4+δ sample with 98.7% of the theoretical density were obtained after being sintered at 1250 °C for 4 h. The conductivity increased with increasing samarium content, and a total conductivity 9.54 × 10−3 S cm−1 at 800 °C could be obtained in Ca0.8Sm0.2MoO4+δ sintered at 1250 °C for 4 h.  相似文献   

18.
Thin films of solid electrolyte La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) were deposited by RF magnetron sputtering onto porous La0.7Sr0.3Cr0.5Mn0.5O3−δ (LSCM) anode substrates. The effects of substrate temperature, sputtering power density and sputtering Ar gas pressure on the LSGM thin film density, flatness and morphology were systematically investigated. RF sputtering power density of 7.8 W cm−2, substrate temperature of 300 °C and sputtering Ar gas pressure of 5 Pa are identified as the best technical parameters. In addition, a three-electrode half cell configuration was selected to investigate the electrochemical performance of the thin film. The LSGM film deposited at optimum conditions exhibited a lower area specific ohmic resistance of 0.68 Ω cm−2 at 800 °C, showing that the practicability of RF magnetron sputtering method to fabricate LSGM electrolyte thin film on porous LSCM anode substrates.  相似文献   

19.
The electrical properties of reduced LAMOX-type oxides (La1.9Y0.1Mo2−yWyO9−δ with y = 0, y = 0.5, y = 1.0) were investigated by complex impedance spectroscopy.When reduced at 605 °C in hydrogen, La1.9Y0.1Mo2O9−δ is 10 times and 3 × 105 times more conductive at 605 and 180 °C, respectively, than in air at the same temperatures. The conductivity curve presents a low slope (0.37 eV versus 1.2 eV in air).Besides, the stabilising effect of tungsten against reduction is evidenced, in good agreement with previous reports.In low oxygen partial pressures however (PO2 < 10−18 Pa), the decomposition of the materials is detected, whatever the tungsten content (0 ≤ y ≤ 1 in La1.9Y0.1Mo2−yWyO9−δ). This observation points out the efficiency limit of Mo6+/W6+ substitution to stabilise the structure against reduction, and the limit for an application as IT-SOFC electrolyte.However, given the high electronic conductivity upon reduction, the application of these materials in IT-SOFC electrodes could be considered.  相似文献   

20.
Based on the conventional interconnect La0.7Ca0.3CrO3−δ, a novel ceramic interconnect for intermediate temperature solid oxide fuel cells was developed. In the air, the electrical conductivities of La0.7Ca0.3CrO3−δ + 5%Ce0.8Sm0.2O1.9 at 600, 700 and 800 °C were 96.7, 146.3 and 687.8 S cm−1, respectively, which increased significantly as compared with La0.7Ca0.3CrO3−δ under the same conditions. Similarly, in pure hydrogen, La0.7Ca0.3CrO3−δ + 3%Ce0.8Sm0.2O1.9 possessed the maximal electrical conductivities which were 4.2, 5.3 and 7.1 S cm−1, respectively at 600, 700 and 800 °C. The crystal structures of La0.7Ca0.3CrO3−δ, La0.7Ca0.3CrO3−δ + 5%Ce0.8Sm0.2O1.9 and La0.7Ca0.3CrO3−δ + 10%Ce0.8Sm0.2O1.9 were single phase with hexagonal symmetry, cubic phase plus some doped ceria impurity and orthorhombic phase plus some doped ceria impurity, respectively. The difference between the crystal structures may account for the difference between the electrical conductivities. The electrical conductivities and sinterability of La0.7Ca0.3CrO3−δ were increased by introducing Ce0.8Sm0.2O1.9, whereas the other properties were not influenced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号