首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cerium (5-15% by weight) doped molybdenum oxide thin films have been prepared on FTO coated glass substrate at 250 °C using sol-gel dip coating method. The structural and morphological changes were observed with the help of XRD, SEM and EDS analysis. The amorphous structure of the Ce doped samples, favours easy intercalation and deintercalation processes. Mo oxide films with 10 wt.% of Ce exhibit maximum anodic diffusion coefficient of 24.99 × 10−11 cm2/s and the change in optical transmittance of (ΔT at 550 nm) of 79.28% between coloured and bleached state with the optical density of (ΔOD) 1.15.  相似文献   

2.
Transparent wide band gap indium molybdenum oxide (IMO) thin films were rf sputtered on glass substrates at room temperature. The films were studied as a function of sputtering power (ranging 40-180 W) and sputtering time (ranging 2.5-20 min). The film thickness was varied in the range 50-400 nm. The as-deposited films were characterized by their structural (XRD), morphological (AFM), electrical (Hall Effect measurements) and optical (visible-NIR spectroscopy) properties. XRD studies revealed that the films are amorphous for the sputtering power ≤ 100 W and the deposition time ≤ 5 min, and the rest are polycrystalline with a strong reflection from (222) plane showing a preferential orientation. A minimum bulk resistivity of 2.65 × 10− 3 Ω cm and a maximum carrier concentration of 4.16 × 1020 cm− 3 are obtained for the crystalline films sputtered at 180 W (10 min). Whereas a maximum mobility (19.5  cm2 V− 1 s− 1) and average visible transmittance (∼ 85%) are obtained for the amorphous films sputtered at 80 W and 100 W respectively for 10 min. A minimum transmittance (∼ 18%) was obtained for the crystalline films sputtered at 180 W (∼ 305 nm thick). The optical band gap was found varying between 3.75 and 3.90 eV for various sputtering parameters. The obtained results are analyzed and corroborated with the structure of the films.  相似文献   

3.
Effect of thermal annealing in different ambients on the structural, electrical and optical properties of the sol-gel derived ZnO thin films are studied. XRD results show that the annealed ZnO films with wurtzite structure are randomly oriented. Crystallite size, carrier concentration, resistivity and mobility are found to be dependent on the annealing temperature. The change in carrier concentration is discussed with respect to the removal of adsorbed oxygen from the grain boundaries. The highest carrier concentration and lowest resistivity are 8 × 1018 cm−3 and 2.25 × 10−1 Ω cm, respectively, for the film annealed at 500 °C in vacuum. The annealed films are highly transparent with average transmission exceeding 80% in the wavelength region of 400-800 nm. In all three ambients, the optical band gap value does not change much below 500 °C temperature while above this temperature band gap value decreases for nitrogen and air and increases for vacuum.  相似文献   

4.
FePt (50 nm) and [FePt(xnm)/AlN(1, 2, 3 nm)]10 (x=2, 3 nm) films were prepared by RF magnetron sputtering technique, then were annealed at 550 °C for 30 min. This work investigates the effect of AlN layer thickness on structure and magnetic properties of FePt/AlN multilayers. Superlattice (0 0 1) peaks can be found in the grazing incidence X-ray diffraction of FePt and [FePt (3 nm)/AlN (1, 2, 3 nm)]10 films, which indicate that the FCC phase has been partially transformed into ordered L10 phase. Compared with the single layer FePt film, superlattice (0 0 1) peaks of FePt/AlN multilayers are weak and wide, which indicates that the introducing of AlN hinders the growth of FePt particle, and also shows the introducing of AlN is not beneficial to the transformation from FCC phase to L10 phase. In addition, the low-angle XRD spectra show the layered structure of FePt/AlN has been broken after annealing. The coercivities, particle size, intergrain exchange interactions of FePt/AlN films are decreased with increasing AlN layer thickness.  相似文献   

5.
Successive ionic layer adsorption and reaction (SILAR) method has been successfully employed for the deposition of cadmium oxide (CdO) thin films. The films were annealed at 623 K for 2 h in an air and changes in the structural, electrical and optical properties were studied. From the X-ray diffraction patterns, it was found that after annealing, H2O vapors from as-deposited Cd(O2)0.88(OH)0.24 were removed and pure cubic cadmium oxide was obtained. The as-deposited film consists of nanocrystalline grains of average diameter about 20-30 nm with uniform coverage of the substrate surface, whereas for the annealed film randomly oriented morphology with slight increase in the crystallite size has been observed. The electrical resistivity showed the semiconducting nature with room temperature electrical resistivity decreased from 10−2 to 10−3 Ω cm after annealing. The decrease in the band gap energy from 3.3 to 2.7 eV was observed after the annealing.  相似文献   

6.
Tungsten- and titanium-doped indium oxide (IWO and ITiO) films were deposited at room temperature by radio frequency (RF) magnetron sputtering, and vacuum post-annealing was used to improve the electron mobility. With increasing deposition power, the as deposited films showed an increasingly crystalline nature. Compared with ITiO films, IWO films showed crystallinity at lower RF power. IWO films are partially crystallized at 10 W deposition power and become nearly fully crystalline at 20 W. ITiO films are fully crystalline only at 75 W. For this reason, film thickness has a greater impact on the electrical properties of IWO films than ITiO films. Vacuum post-annealing is more effective in improving electron mobility for amorphous than for (partially) crystalline IWO and ITiO films. Changes in the electrical properties of ITiO films can be better controlled as a function of annealing temperature than those of IWO films. Finally, post annealed 308 nm-thick IWO and 325 nm-thick ITiO films have approximately 80% transmittance in visible and near infrared wavelengths (up to 1100 nm), while their sheet resistances decrease to 9.3 and 10 Ω/□, and their electron mobilities are 51 cm2V− 1 s− 1 and 50 cm2V− 1 s− 1, respectively, making them suitable for use as Transparent Conductive Oxide layers of low bandgap solar cells.  相似文献   

7.
Linear transparent zinc oxide films were fabricated using an inductively coupled microplasma jet generated in argon under atmospheric conditions. The films were formed by the sputtering and melting of a zinc filament placed inside the plasma. Film growth rates varied between 10 to 30 nm/s for input powers between 20 and 30 W. Film roughness below 20 nm and optical transmittances up to 90% in the visible were obtained while the sheet resistances ranged between 2 × 104 and 1 × 105Ω/□. The presented technique may allow high-rate, localized, fabrication of functional ZnO films for optoelectronic applications.  相似文献   

8.
The thermal diffusivity of aluminum oxide (Al2O3) films and the thermal boundary resistance between Al2O3 and molybdenum (Mo) films were investigated using ‘rear heating/front detection (RF) type’ picosecond and nanosecond thermoreflectance systems. Amorphous Al2O3 films sandwiched between Mo films (Mo/Al2O3/Mo) were prepared on fused silica substrates by RF magnetron sputtering using Al2O3 and Mo targets. The thicknesses of the Al2O3 and Mo layers were 0.5-100 nm and 70 nm, respectively. The thermal diffusivity of the amorphous Al2O3 films was found to be 9.5 × 10− 7 m2/s. The thermal boundary resistance between Al2O3 and Mo was 1.5 × 10− 9 m2K/W, corresponding to the thermal resistance of a 4.2 nm thick Al2O3 film or a 77 nm thick Mo film. However, the thermal diffusivity of the amorphous Al2O3 film is approximately one twelfth that of bulk polycrystalline Al2O3. This difference was attributed to the smaller mean free path of phonons in amorphous Al2O3 due to its disordered structure.  相似文献   

9.
Thin films of CaWO4 and SrWO4 were prepared on glass substrates by spray pyrolysis. The effects of preparation conditions and monovalent, bivalent and trivalent cation doping on cathodoluminescence (CL) properties of the films were studied. Polycrystalline CaWO4 and SrWO4 films formed a scheelite structure after being annealed above 300°C. They exhibited analogous cathodoluminescence consisting of a blue emission band at 447 nm and a blue-green emission band at 487 nm. The blue and blue-green emission intensities increased with substrate and annealing temperature. Annealing atmosphere and doping with Ag+, Pb2+ and La3+ did not influence the characteristics of the blue and blue-green emissions, whereas Eu3+ did. The results indicated both the blue and blue-green emissions originated from the WO42− molecular complex. The luminance and efficiency for CaWO4 film were 150 cd/m2 and 0.7 lm/W at 5 kV and 57 μA/cm2.  相似文献   

10.
In this study, transparent conducting Al-doped zinc oxide (AZO) films with a thickness of 150 nm were prepared on Corning glass substrates by the RF magnetron sputtering with using a ZnO:Al (Al2O3: 2 wt.%) target at room temperature. This study investigated the effects of the post-annealing temperature and the annealing ambient on the structural, electrical and optical properties of the AZO films. The films were annealed at temperatures ranging from 300 to 500 °C in steps of 100 °C by using rapid thermal annealing equipment in oxygen. The thicknesses of the films were observed by field emission scanning electron microscopy (FE-SEM); their grain size was calculated from the X-ray diffraction (XRD) spectra using the Scherrer equation. XRD measurements showed the AZO films to be crystallized with strong (002) orientation as substrate temperature increases over 300 °C. Their electrical properties were investigated by using the Hall measurement and their transmittance was measured by UV-vis spectrometry. The AZO film annealed at the 500 °C in oxygen showed an electrical resistivity of 2.24 × 10− 3 Ω cm and a very high transmittance of 93.5% which were decreased about one order and increased about 9.4%, respectively, compared with as-deposited AZO film.  相似文献   

11.
A.A. Dakhel 《Vacuum》2007,81(9):1101-1108
Thin films of erbium-manganese oxide were grown on glass and p-type Si substrates. The films were thermally pre-annealed at different temperatures ranging from 400 to 1000 °C to produce different crystalline structures and agitate a solid-state reaction. The structural characterisation of the films was carried out by X-ray diffraction (XRD) and energy dispersion X-ray fluorescence (XRF). The XRD investigation shows that the films annealed at 400 °C were amorphous and nanocrystals of ErMnO3 appear under pre-annealing at about 800 °C or more. Mn oxide and Er oxide prevent each other from crystallising alone. The optical properties of the films pre-annealed at different temperatures were studied in the fundamental absorption region of the spectrum in wavelength range 230-800 nm. The spectral complex refractive index, complex optical dielectric constant, and optical bandgap were determined. A modified single-oscillator Forouhi-Bloomer (FB) technique, Wemple-Didomenico (WD) equation, Urbach's relation, Tauc et al. relation, and pointwise unconditioned minimisation approach (PUMA) were used in the analysing of the obtained spectral data.  相似文献   

12.
R. Srinivasan 《Materials Letters》2010,64(18):1954-1362
Cubic phase of 5% samarium doped cerium oxide nanoparticles was successfully synthesized by hydrolysis assisted co-precipitation method. The average grain sizes of the as-prepared and annealed (800 °C) samples were 12-16 nm respectively. The rod like morphology of the post annealed sample was revealed by transmission electron microscope (TEM). The nanoparticles exhibited the orange and red color emissions when excited at 330 nm. The as-prepared and annealed powders showed orange emission with maximum intensity at 574 nm which is the characteristic peak of the Sm3+ ion corresponding to the magnetic dipole transition between the 4G5/2 and 6H5/2 states. Size dependent luminous intensity was observed from photoluminescence studies.  相似文献   

13.
Sol-gel grown polycrystalline Al doped zinc oxide (AZO) thin films have been deposited on Si wafers, microscopy slide glass and fluorine doped tin oxide coated glass substrates using the spin coating technique. The atomic ratio of Al:Zn in the films is 0.2. From the X-ray diffraction investigations it is found that the preferential growth of (100) reflection peak has taken place in the 450, 550 and 600 °C annealed films. Scanning electron microscopic study has shown that the films contain well-defined grains arranged in a closely packed array. The resistivity of the 500 °C annealed film is measured to be 5 × 10 1 Ω cm. The films have exhibited excellent optical transmittance (~ 90%) in the 400-1100 nm wavelength range. Refractive indices (n = 1.9-1.95) of the films on Si wafer are independent of the annealing temperature. Thickness of the films produced at 4000 rpm is in the range of 58-62 nm. The refractive index and thickness of these films are nearly appropriate to cause destructive interference after reflection from front emitters of solar cells. These films have demonstrated a reflectivity value of about 3% at a wavelength of 700 nm. The AZO coated silicon solar cells possess Voc and Isc values of 573 mV and 237 mA, respectively.  相似文献   

14.
R. Azimirad  O. Akhavan 《Vacuum》2008,82(8):821-826
A simple method for synthesis of NaxWO3 nanowhiskers on tungsten thin films with 40 nm thickness sputtered on soda lime substrate as a source of sodium atoms has been reported for the first time. After heat treatment of the W thin films at 650 °C in N2 ambient for different times (15, 80 and 180 min), crystalline NaxWO3 nanowhiskers with [0 0 1] direction were obtained. scanning electron microscopy (SEM), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS) and optical transmission/reflection measurements were employed to determine various properties of the grown nanowhiskers. Experimental results revealed that size and density of nanowhiskers were dependent on the annealing time and found that the 80-min heat treatment was a proper time for the growth of sodium-doped tungsten oxide nanowhiskers, in our experimental conditions. According to SEM observations, the synthesized nanowhiskers have 70-300 nm in width and 1-10 μm in length. It was also observed that by increasing the heating time to 180 min resulted in diffusion of the nanowhiskers into the substrate.  相似文献   

15.
SrLa1−xRExGa3O7 (RE = Eu3+, Tb3+) phosphor films were deposited on quartz glass substrates by a simple Pechini sol-gel method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy, field-emission scanning electron microscopy, photoluminescence spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 700 °C and crystallized fully at 900 °C. The results of FT-IR spectra were in agreement with those of XRD. Uniform and crack-free films annealed at 900 °C were obtained with average grain size of 80 nm, root mean square roughness of 46 nm and thickness of 130 nm. The RE ions showed their characteristic emission in crystalline SrLa1−xRExGa3O7 films, i.e., Eu3+5D0-7FJ (J = 0, 1, 2, 3, 4), Tb3+5D4-7FJ (J = 6, 5, 4, 3) emissions, respectively. The optimum concentrations (x) of Eu3+ and Tb3+ were determined to be 50, and 80 mol% in SrLa1−xRExGa3O7 films, respectively.  相似文献   

16.
Xueyan Tian  Yinzhu Li 《Thin solid films》2009,517(20):5855-5857
Lead zirconate titanate (Pb(Zr0.52Ti0.48)O3, PZT) thin films fabricated by magnetron sputtering technique on the Pt/Ti/SiO2/Si substrates at room temperature, were annealed by means of CO2 laser with resulting average substrate temperature below 500 °C. The crystal structure, surface morphology and pyroelectric properties of the PZT films before and after annealing were investigated by X-ray diffraction, atomic force microscopy, and pyroelectric measurements. The results show that the annealed PZT thin film with a laser energy density of 490 W/cm2 for 25 s has a typical perovskite phase, uniform crystalline particles with a size of about 90 nm, and a high pyroelectric coefficient with 1.15 × 10− 8 Ccm− 2 K− 1.  相似文献   

17.
C. Guillén 《Thin solid films》2006,515(2):640-643
Aluminum-doped zinc oxide thin films have been deposited by DC and MF magnetron sputtering from a ceramic oxide target in argon atmosphere without direct heating of the substrates. The samples were prepared at different predetermined conditions of input power or discharge voltage and the influence upon electronic, optical, and microstructural properties has been investigated. The as-deposited layers show low resistivity, such as 9 × 10− 4 Ω cm minimum for DC excitation and 1.2 × 10− 3 Ω cm for MF mode, with growth rates up to 130 nm/min, and resulting substrate temperatures always below 200 °C. Low resistivity of the films is combined with high transmission, 85-90% in the visible wavelength range (400-800 nm). A strong (002) texture perpendicular to the substrate has been found, with lower strain for DC than for MF sputtering.  相似文献   

18.
20 mol% Gd-doped ceria (20GDC) electrolyte films on poly-crystalline Al2O3 substrates were prepared by radio frequency (RF) magnetron sputtering from a 20GDC oxide target, which was made by the processes of colloidal dispersion-pressure casting-sintering. Material characteristics of the 20GDC oxide target and the deposited films before and after annealed at 900 °C for 2 h were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and conductivity measurements. Crack-free and dense 20GDC electrolyte films were observed by the deposition conditions of 200 W (RF power). Homogeneity tests revealed the chemical compositions (Ce and Gd) were uniformly distributed through the bulk of the target and the deposited films. 20GDC film with a comparable conductivity of 1.00 × 10− 3 S/cm at 650 °C is higher than that of bulk yttria-stabilized zirconia (YSZ), but smaller than that of bulk GDCs (10GDC and 20 GDC). Sputtered-GDC films in this study can be also suggested to be used as the electrolyte films for solid oxide fuel cells (SOFCs) systems as compared to the well-known YSZ.  相似文献   

19.
Titanium oxide (TiOx) thin films were deposited on the Si(100) substrates by direct-current reactive magnetron sputtering at 3-15 % oxygen flow ratios (FO2% = FO2/(FO2 + FAr) × 100%), and then annealed by rapid thermal annealing (RTA) at 350-750 °C for 2 min in air. The phase, bonding and luminescence behaviors of the as-deposited and annealed TiOx thin films were analyzed by X-ray diffraction (XRD), Raman spectroscopy and photoluminescence (PL) spectroscopy, respectively. The as-deposited TiOx films were amorphous from XRD and showed weak Raman intensity. In contrast, the distinct crystalline peaks of anatase and rutile phases were detected after RTA at 550-750 °C from both XRD and Raman spectra. A mixture of anatase and rutile phases was obtained by RTA at 3 FO2% and its amount increased with annealing temperature. Only the anatase phase was detected in the 6-15 FO2% specimens after RTA. The PL spectra of all post-annealed TiOx films showed a broad peak in visible light region. The PL peak of TiOx film at 3 FO2% at 750 °C annealing can be fitted into two Gaussian peaks at ~ 486 nm (2.55 eV) and ~ 588 nm (2.11 eV) which were attributed to deep-level emissions of oxygen vacancies in the rutile and anatase phases, respectively. The peak around 550 nm was observed at 6-15 FO2% which is attributed to electron-hole pair recombination from oxygen vacancy state in anatase phase to valence band. The variation of intensity of PL peaks is concerned with the formation of the rutile and anatase phases at different FO2% and annealing temperatures.  相似文献   

20.
TiAlN films were deposited on silicon (1 1 1) substrates from a TiAl target using a reactive DC magnetron sputtering process in Ar+N2 plasma. Films were prepared at various nitrogen flow rates and TiAl target compositions. Similarly, CrN films were prepared from the reactive sputtering of Cr target. Subsequently, nanolayered TiAlN/CrN multilayer films were deposited at various modulation wavelengths (Λ). X-ray diffraction (XRD), energy dispersive X-ray analysis, nanoindentation and atomic force microscopy were used to characterize the films. The XRD confirmed the formation of superlattice structure at low modulation wavelengths. The maximum hardness of TiAlN/CrN multilayers was 3900 kg/mm2, whereas TiAlN and CrN films exhibited maximum hardnesses of 3850 and 1000 kg/mm2, respectively. Thermal stability of TiAlN and TiAlN/CrN multilayer films was studied by heating the films in air in the temperature range (TA) of 500-900 °C for 30 min. The XRD spectra revealed that TiAlN/CrN multilayers were stable up to 800 °C and got oxidized substantially at 900 °C. On the other hand, the TiAlN films were stable up to 700 °C and got completely oxidized at 800 °C. Nanoindentation measurements performed on the films after heat treatment showed that TiAlN retained a hardness of 2200 kg/mm2 at TA=700 °C and TiAlN/CrN multilayers retained hardness as high as 2600 kg/mm2 upon annealing at 800° C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号