首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structural and magnetic properties of the complex metal oxides Pb(Mn1/2Nb1/2)O3 (PMNO) and Pb(Mn1/4Fe1/4Nb1/2)O3 (PMFNO), which belong to a class of disordered perovskites have been studied. The magnetic susceptibilities of PMNO showed hysteresis between field cooled and zero-field cooled conditions below the transition of 15 K, suggesting that the material has a spin-glass feature. Neutron diffraction patterns of PMNO showed no evidence of a long-range magnetic ordering at 1.5 K, which is consistent with spin-glass behavior. Rietveld refinements of neutron powder diffraction data collected at different temperatures between 1.5 and 700 K have been carried out in order to extract structural information. The crystal structure of this compound is cubic (space group Pmm) within the whole temperature interval. The Mn and Nb ions were found to be disordered over the perovskite B-sites. The main feature of this structure is the positional disorder at the Pb site, the importance of which in connection with the ferroic transitions is briefly discussed. The Pb cations show a positional disorder shifting from their high-symmetry positions along the [1 1 1] direction. The effect of Fe-doping on PMNO has been studied. The substitution of Fe at the Mn site in PMFNO results in a small changes of the magnetic properties without significant differences in the crystal structures. The factors governing the observed structural and magnetic properties of PMNO and PMFNO are discussed and compared with those of other quaternary Mn-containing perovskites. For the PbB3+1/2Nb1/2O3 series with the isomorphous substitution B3+, graphs of average lattice parameters of the perovskite phase and the temperatures of ferroelectric and magnetic phase transitions as functions of the B3+ cation radius were constructed and are discussed. Influence of A-cation sublattice on magnetic properties is also considered.  相似文献   

2.
Two samples of the double perovskite Sr2FeReO6 have been synthesized by (1) soft-chemistry procedures and (2) high-pressure methods. The sample prepared by a soft-chemistry technique presents 75% of Fe/Re cationic order whereas the one prepared by the application of high external pressure generates a complete Fe/Re cationic order. Both materials have been characterized by X-ray diffraction, neutron powder diffraction and magnetic measurements. The magnetic properties of both oxides have been compared, observing that the specimen prepared via soft-chemistry procedures presents an enhanced Curie temperature of 445 K, although the sample prepared under high-pressure techniques displays a superior saturation magnetization. This behavior is explained as a consequence of the presence, in the partially disordered sample, of Fe-rich islands containing strong Fe-O-Fe antiferromagnetic couplings, able to nucleate and lock the ferromagnetic interactions of the ordered regions, thus increasing the global Curie temperature of the partially disordered material.  相似文献   

3.
The structural and magnetic properties of the perovskite type compound LaFe0.5Cr0.5O3 have been studied by temperature dependent neutron powder diffraction and magnetization measurements. Rietveld refinement of the neutron diffraction data shows that the compound crystallizes in an orthorhombic perovskite structure with a random positioning of the Fe and Cr cations at the B sublattice. The magnetic structure at 10 K is a collinear antiferromagnetic one with the magnetic moment per site being equal to 2.79(4) μB. Magnetisation measurements confirm the overall antiferromagnetic behaviour. Moreover, it indicates a weak uncompensated magnetic moment close to the transition temperature TN ≈ 265 K. This moment can be described by a magnetic cluster state, which remains up to 550 K. Electron diffraction patterns along with high-resolution transmission electron microscopy images reveal that the crystallites are composed by domains of different orientation, which share the same cubic perovskite sub-cell reflections.  相似文献   

4.
The crystal and magnetic structures of LaCrO3 and La(Cr0.90Ti0.10)O3 have been investigated between 5 and 350 K by means of neutron powder diffraction and DC magnetic measurements. Both compounds are characterized by an antiferromagnetic Gx-type ordering at low temperature. Structural features suggest the occurrence of Ti in the tetra-valent state. Despite the mixed valence induced by Ti-substitution leading to the occurrence of the Jahn-Teller species Cr2+, no evidence for long range ferromagnetism can be detected. On account of a miscibility gap, a higher degree of Ti-substitution at the Cr site cannot be achieved; as a consequence the solid state solubility of Ti in LaCrO3 at 1573 K has been ascertained.  相似文献   

5.
Magnetic and dielectric properties of perovskite manganites R0.5Sr0.5MnO3 (R = Gd, Tb and Dy) have been investigated. DC and AC magnetic measurements showed short-range glassy magnetic ordering at Tg ∼ 40 K. Such ordering was observed by neutron diffraction and is ascribable to the size mismatch of R3+ and Sr3+ settled randomly at the same crystallographic site. Dielectric constants for each material were ∼1000-10,000 between ∼50 and ∼300 K and showed broad maximums above Tg. Dielectric dispersion showed poor coherency of the motion of polar regions, plausibly because of the size-mismatch effect; both the magnetic and dielectric properties of this system are governed by the randomness at the R/Sr site. The tan δ and EXAFS data suggest that the dielectric response is rooted in a transfer of the Mn-3d electrons.  相似文献   

6.
Perovskite-type complex metal oxides A2FeWO6 (A=Sr, Ba) were prepared by a standard solid state reaction method. Rietveld analysis of neutron powder diffraction (NPD) data at 295 K shows that the Sr2FeWO6 (SFW) compound adopts a monoclinic unit cell (space group P21/n, a=5.6480(4), b=5.6088(4), c=7.9362(6) Å and β=89.99(2)°), and the Ba2FeWO6 (BFW) compound is tetragonal (space group I4/m, a=5.7547(4), c=8.125(1) Å). A combination of a reverse Monte Carlo (RMC) technique and Rietveld analysis shows that the low temperature (10 K) magnetic structures of SFW and BFW are antiferromagnetic based on a unit cell related to that of the nuclear structure by a propagation vector, k=(01/21/2). The magnetic moment of iron was found to be 3.86(4)μB and 3.49(2)μB at 10 K for the Sr- and the Ba-containing compounds, respectively.  相似文献   

7.
The complex metal oxide Mn3TeO6 exhibits a corundum related structure and has been prepared both in forms of single crystals by chemical transport reactions and of polycrystalline powders by a solid state reaction route. The crystal structure and magnetic properties have been investigated using a combination of X-ray and neutron powder diffraction, electron microscopy, calorimetric and magnetic measurements. At room temperature this compound adopts a trigonal structure, space group with a = 8.8679(1) Å, c = 10.6727(2) Å. A long-range magnetically ordered state is identified below 23 K. An unexpected feature of this magnetic structure is several types of Mn-chains. Under the action of the incommensurate magnetic propagation vector k = [0, 0, 0.4302(1)] the unique Mn site is split into two magnetically different orbits. One orbit forms a perfect helix with the spiral axis along the c-axis while the other orbit has a sine wave character along the c-axis.  相似文献   

8.
Orthorhombic perovskite-type Ca(Mn1−xTix)O3−δ (0 ≤ x ≤ 0.7) was synthesized at 1173 K for 12 h in a flow of oxygen from a precursor gel prepared using citric acid and ethylene glycol. The Mn3+ ion was generated by substituting a Ti4+ ion in CaMnO3. The average particle size was 100-300 nm and did not depend on x. The lattice constants and the (Mn, Ti)-O distance increased linearly with increasing x. The variation in global instability index (GII) indicated that the instability of the structure increases monotonically with increasing x. Ca(Mn1−xTix)O3−δ was an n-type semiconductor that had its minimum values of electrical resistivity (ρ) and activation energy (Ea) at x = 0.1. Ca(Mn1−xTix)O3−δ (x = 0 and 0.1) exhibited a weak ferromagnetic behavior. The variation in μeff indicated that the spin state of the Mn3+ ion changes from low to high at x = 0.1, then reverts to low in the range of 0.2 ≤ x ≤ 0.7. The variations in ρ and Ea are explained by the number of electrons according to the change in the spin state of the Mn3+ ion.  相似文献   

9.
The structural, magnetic and electrical properties of the perovskite-type compound La0.83A0.17Fe0.5Cr0.5O3−δ (A = Ba, Ca) have been investigated by neutron diffraction, magnetization measurements and conductivity measurements. Rietveld refinement of X-ray and neutron diffraction data shows that the compound adopts an orthorhombic crystal structure with Pbnm symmetry with a random positioning of the iron and chromium cations on the B sublattice. The magnetic structures at 10 K are collinear antiferromagnetic with the magnetic moment per site being equal to 2.91(2)μB (for Ba) and 3.05(2)μB (for Ca). Magnetization measurements confirm the overall antiferromagnetic behavior. The magnetic structure is based on a unit cell related to that of the nuclear structure and the magnetic cell can be considered the same as nuclear cell. Barium doped samples show lower oxygen deficiency and higher conductivity than calcium doped samples. At low oxygen pressure, both compounds show p-type electronic conduction.  相似文献   

10.
We synthesized the spinel-type compounds belonging to the Mn2−xV1+xO4 series with x = 0, 1/3 and 1 as polycrystalline powders. Crystal and magnetic structures were refined using synchrotron X-ray and neutron powder diffraction. At 300 K all members crystallize in the cubic system, space group , and show a structural transition at low temperature, changing to a tetragonal symmetry (space group I41/amd). Cations distributions between octahedral and tetrahedral sites were refined from neutrons diffraction (ND) data and explained based on crystal field stabilization energies (CFSE) and ionic radii. The magnetic unit cell is the same as the crystallographic one, having identical symmetry relations. The magnetic structure was refined as an arrangement of collinear spins, antiferromagnetically ordered, parallel to the c-axis of the unit cell. The refined site magnetic moments are smaller than those obtained from hysteresis cycles of the M vs. H measurements, indicating that some non-collinear disordered component coexists with the ordered component along the c-axis.  相似文献   

11.
In this paper the synthesis, conductivity, and structure of the garnet-related Li ion conductor, Li5Nd3Sb2O12, are reported. As for the related Li5La3M2O12 (M = Nb, Ta) materials, this phase shows high Li ion conductivity, with a conductivity at 300 °C of 9.2 × 10−3 S cm−1. Structural studies using neutron diffraction indicate a cubic unit cell, space group Ia-3d, with Li located in two partially occupied sites. One of the sites is the traditional garnet structure tetrahedral site, while the other Li site is considerably more distorted. Although the latter is nominally a six coordinate site, a close inspection suggests that the coordination could be described as distorted tetrahedral, with the remaining two bonds being significantly longer (≈2.6 Å).  相似文献   

12.
A new material of nominal stoichiometry YGaMnO5 has been prepared in polycrystalline form from citrate precursors followed by thermal treatments under high-oxygen pressure. This compound has been characterized from neutron powder diffraction (NPD) data and magnetic measurements. For comparison, the parent compound YMn2O5 has also been synthesized and its crystal structure refined by NPD data. The new oxide has an actual stoichiometry YGa1−xMn1+xO5 (x = 0.23), determined by NPD, showing an important cationic disorder between both metal sites; it is orthorhombic, Pbam (SG), and its crystal structure contains chains of Mn4+O6 edge-sharing octahedra, linked together by Ga3+O5 pyramids and YO8 units. With respect to YMn2O5, containing axially elongated MnO5 pyramids due to the Jahn-Teller effect of Mn3+ cations, the GaO5 pyramidal units in YGa0.77Mn1.23O5 are substantially flattened. This compound has a paramagnetic behaviour with two weak anomalies at about 50 K and 350 K. The magnetic structures, studied at 1.4 K and 100 K show a ferromagnetic coupling along the chains of MnO6 octahedra.  相似文献   

13.
In order to understand the relationship between crystal structure and thermoelectric properties, the neutron diffraction patterns of the thermoelectric materials with the nominal composition CexCo4Sb12 (x = 0.5, 1.0) were measured at room temperature, the data were fitted by the Rietveld profile refinement method using the Fullprof2k program. It is found that the sample Ce0.5Co4Sb12 is composed of two phases, its major phase is CoSb3 with skutterudite-structure and the Ce atom is not incorporated into the lattice, the impurity is monoclinic CoSb2. In the case of Ce1.0Co4Sb12, the major phase is filled skutterudite, about 10% of the 2a site is occupied by Ce atom, the second phase is monoclinic CoSb2.  相似文献   

14.
A new iron phosphonate-oxalate [Fe(O3PCH3)(C2O4)0.5(H2O)] (1), has been synthesized under hydrothermal condition. The single-crystal X-ray diffraction studies reveal that 1 consists of layers of vertex-linked FeO6 octahedra and O3PC tetrahedra, which are further connected by bis-chelate oxalate bridges, giving to a 3D structure with 10-membered channels. Crystal data: monoclinic, P21/n (no. 14), a = 4.851(2) Å, b = 16.803(7) Å, c = 7.941(4) Å, β = 107.516(6)°, V = 617.2(5) Å3, Z = 4, R1 = 0.0337 and wR2=0.0874 for 1251 reflections [I > 2σ(I)]. Mössbauer spectroscopy measurement confirms the existence of high-spin Fe(III) in 1. Magnetic studies show that 1 exhibits weak ferromagnetism with TN = 30 K due to a weak spin canting.  相似文献   

15.
The new complex vanadium oxide K2SrV3O9 has been synthesized and investigated by means of X-ray powder diffraction (XPD), electron microscopy and magnetic susceptibility measurements. The oxide has an orthorhombic unit cell with lattice parameters a = 10.1922(2) Å, b = 5.4171(1) Å, c = 16.1425(3) Å, space group Pnma and Z = 4. The crystal structure of K2SrV3O9 has been refined by Rietveld method using X-ray powder diffraction data. The structure contains infinite chains built by V4+O5 square pyramids linked to each other via VO4 tetrahedra. The chains form layers and potassium and strontium cations orderly occupy structural interstices between these layers. Electron diffraction as well as high resolution electron microscopy confirmed the structure solution. Magnetic susceptibility measurements revealed an antiferromagnetic interaction with J of the order of 100 K inside the chains and no long-range magnetic order above 2 K. The origin of the magnetic exchange is likely a result of super-exchange interaction through the two VO4 tetrahedra linking the polyhedra with the magnetic V4+ cations.  相似文献   

16.
Perovskites are important materials in a number of important technological applications, including solid oxide fuel cells, catalysis, and giant magneto-resistance materials. For many of these purposes, a mixture of B-cations can be used to tune the desired properties, e.g., oxygen reduction, ionic conductivity. For a solid oxide fuel cell, two particular ceramic components are of critical importance and have been extensively studied, the cathode (La0.8Sr0.2)MnO3−x and the interconnect material (La0.8Sr0.2)CrO3. In this study, we examined the mixed B-cation perovskites (La0.8Sr0.2)(M0.9Ni0.1)O3 (M = Mn, Cr). All materials were synthesized using the glycine-nitrate method, followed by air annealing. The structures were determined using powder neutron diffraction methods. Refinement of the data showed that even at this low concentration, the compounds have monoclinic symmetry (P21/n) and that the nickel had a strong preference for the smaller of the two octahedral sites. This small amount of nickel substituted on the B-site resulted in a symmetry reduction when compared to the unsubstituted (LaSr)MnO3 or (LaSr)CrO3 materials. Although this structural type has been seen previously in heavily substituted perovskites, these materials show that even at this low level of substitution a segregation of the metals in a manner similar to the double perovskites A2BB′O6−x can be detected. This may have implications involving material stresses on cycling that may result as the temperature is raised or lowered through this crystallographic transition.  相似文献   

17.
The new lead vanadium phosphate Pb1.5V2(PO4)3 was synthesized by solid state reaction and characterized by X-ray powder diffraction, electron microscopy, and magnetic susceptibility measurements. The crystal structure of Pb1.5V2(PO4)3 (a = 9.78182(8) Å, S.G. P213, Z = 4) was determined from X-ray powder diffraction data and belongs to the langbeinite-type structures. It is formed by corner-linked V3+O6 octahedra and tetrahedral phosphate groups resulting in a three-dimensional framework. The lead atoms are situated in the structure interstices and only partially occupy their positions. An electron microscopy study confirmed the structure solution. Magnetic susceptibility measurements revealed Curie-Weiss (CW) behavior for Pb1.5V2(PO4)3 at high temperature whereas at around 14 K an abrupt increase on the susceptibility was observed.  相似文献   

18.
19.
We have investigated the substitution effect of pentavalent bismuth ions on the electronic structure and physicochemical properties of barium indium tantalate. X-ray diffraction, X-ray absorption spectroscopic, and energy dispersive spectroscopic microprobe analyses reveal that, under oxygen atmosphere of 1 atm, pentavalent Bi ions are successfully stabilized in the octahedral site of the perovskite tantalate lattice. According to diffuse reflectance UV-vis spectroscopic analysis, the Bi substitution gives rise to the significant narrowing of band gap of barium indium tantalate even at a low Bi content of ∼5%, underscoring a high efficiency of Bi substitution in the band gap engineering. Such an effective narrowing of the band gap upon the Bi substitution would be attributable to the lowering of conduction band position due to the high electronegativity of BiV substituent. As a result of band gap engineering, the Ba(In0.5Ta0.5−xBix)O3 compounds with x ≥ 0.03 can generate photocurrents under visible light irradiation (λ > 420 nm). Based on the present experimental findings, it becomes clear that the substitution of highly electronegative p-block element like BiV ion can provide a very powerful tool for tailoring the electronic structure and physicochemical properties of wide band gap semiconductors.  相似文献   

20.
Pb(Zn1/3Ta2/3)O3 ceramics, compositionally modified by the incorporation of Fe to the octahedral lattice sites, were prepared and characterized in terms of perovskite development, dielectric properties, as well as microstructure evolution. The powders of the B-site precursor compositions were synthesized separately and reacted with PbO to form Pb[(Zn1/3Ta2/3),(Fe1/2Ta1/2)]O3. The perovskite contents increased continuously with the Fe concentration. The maximum dielectric constant values of the ceramics increased tremendously with the fraction of Fe, whereas the dielectric maximum temperatures were rather insensitive to the compositional change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号