首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Bi2−xLaxAlNbO7 (0 ≤ x ≤ 0.5) photocatalysts were synthesized by the solid-state reaction method and characterized by powder X-ray diffraction (XRD), infrared (IR) spectra and ultraviolet-visible (UV-vis) spectrophotometer. The band gaps of the photocatalysts were estimated from absorption edge of diffuse reflectance spectra, which were increased by the doping of lanthanum. It was found from the electronic band structure study that orbitals of La 5d, Bi 6p and Nb 4d formed a conduction band at a more positive level than Bi 6p and Nb 4d orbitals, which results in increasing the band gap. Photocatalytic activity for water splitting of Bi1.8La0.2AlNbO7 was about 2 times higher than that of nondoped Bi2AlNbO7. The increased photocatalytic activity of La-doped Bi2AlNbO7 was discussed in relation to the band structure and the strong absorption of OH groups at the surface of the catalyst.  相似文献   

2.
Infrared optical properties of SrBi2−xNdxNb2O9 (SBNN) ceramics with different Nd compositions (from 0 to 0.2) have been investigated by near-normal incident reflectance technique. The experimental spectra in the wavenumbers range of 350-1500 cm−1 were analyzed using the Lorentz oscillator model for five infrared-active phonon mode observed. It is found that the frequencies of the NbO6 tilting and symmetric stretching modes linearly decrease with the Nd composition due to the octahedra distortion. The high-frequency dielectric constant varies in the range from 4.55 ± 0.04 to 4.80 ± 0.04. Owing to the contribution from the stronger electronic transitions, the real part of dielectric function Re(?) is estimated to about 4.0 in the high-frequency transparent region.  相似文献   

3.
A glass-forming domain is found and studied within the Tl2O-TiO2-TeO2 system. Linear and non-linear optical, thermal and mechanical characteristics were measured and/or theoretically estimated for relevant glasses, and found to be very promising for applications in non-linear optical designs. The chemical, lattice-dynamical and structural effects of the Tl2O and TiO2 modifiers are discussed by using the Raman spectroscopy data. It was concluded that the former modifier favours the non-linear optical properties of the glasses, whereas the latter improves their thermal and mechanical stabilities.  相似文献   

4.
Within the Tl2O-Ag2O-TeO2 system, a large glass-forming domain was evidenced and is presented for the fist time. Densities, glass transition (Tg) and crystallization (Tc) temperatures of the relevant glasses were measured. A structural approach of these glasses as functions of the composition was performed using Raman scattering. The Raman spectra were analysed in terms of the structural modifications induced by the Tl2O and Ag2O modifiers. It has clearly evidenced a phase separation inherent in tellurite glasses with low valence cations (as Tl+ and Ag+). The glasses would be constituted of two phases only: one of pure TeO2 and one of pure ortho-tellurite M2TeO3 (M = Ag, Tl) with the statistically mixed Ag-Tl cationic composition.  相似文献   

5.
New developments in photonic technology need new materials for various applications. In the present report, Nd3+-doped NaF-Na2O-B2O3 glasses were prepared and the spectroscopic and glass transition properties were analysed. The Fourier transform infrared spectral studies reveal that the glass contains BO3 and BO4 units as the local structures and the Na+ ions as the network modifiers. The absorption studies were carried out by using Judd-Ofelt theory, the experimental and theoretical oscillator strengths were also calculated. The emission spectral study was done for the 1 mol% Nd-doped glass and the spontaneous emission probability and stimulated emission cross-sections for the , transitions were calculated using the J-O parameters.  相似文献   

6.
In this paper, inorganic-organic hybrid semiconductor (ZnSe)(N2H4)x(C5H5N)y nanosheets as well as (ZnSe)(C5H5N)y nanoparticles were first synthesized by a solvothermal method in a ternary solution and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra, ultraviolet-visible (UV-vis) absorption spectra, thermogravimetric analysis (TGA), differential scanning calorimeter (DSC) and photoluminescence (PL) spectra. The results indicated that the morphology and composition of the products were largely influenced by the reaction temperature and the volume ratio of water. When the reaction temperature and the water content were lower, (ZnSe)(N2H4)x(C5H5N)y nanosheets were formed. As the reaction temperature or the content of water was high enough, (ZnSe)(C5H5N)y nanoparticles were formed. Pure hexagonal wurtzite ZnSe nanosheets or zinc blende ZnSe nanoparticles were obtained by extracting the corresponding hybrids. The bandgap absorption of ZnSe nanocrystals blue shifted in comparison with the bulk. The photoluminescent intensity of (ZnSe)(N2H4)x(C5H5N)y nanosheets was much stronger than that of (ZnSe)(C5H5N)y nanoparticles.  相似文献   

7.
The glass-forming region in the GeS2-Ga2S3-PbI2 system was determined and the basic parameters of thermal and optical properties (glass transition temperature, density, microhardness and transmission window) for these glasses have been measured. Better thermal stability originated from their larger difference between Tx and Tg in the range of 107-161 °C, higher glass transition temperatures between 252 and 398 °C and wide optical transmission window from 0.5 to 12.7 μm make these glasses the promising candidate materials for rare earth doped fiber amplifiers and nonlinear optical devices.  相似文献   

8.
9.
Ag2O-P2O5 and Ag2O-P2O5-20 wt% CdCl2 glasses were prepared by melt quenching method and characterized with the help of several experimental techniques. Powder X-ray diffraction study indicated that the glasses are amorphous in nature. DSC studies showed that CdCl2 doped glass is chemically more durable. Electrical conductivity and ionic transference number measurements have shown that both the glasses are ionic conductors with Ag+ ions as the charge carriers. The electrical conductivity of the doped glass is found to be higher than the undoped one. Structures of the glasses have been proposed on the basis of IR spectral analysis. From SEM studies it has been inferred that addition of 20 wt% CdCl2 modifies the morphology of Ag2O-P2O5 glass and in its presence formation of clusters composed of nanofibers occur.  相似文献   

10.
In this work, the single source organometallic precursor Bu4Sn6S6 was impregnated and decomposed on the surface of TiO2 to produce semiconductor composites. 119Sn Mössbauer, Raman and ultra violet/visible spectroscopies, powder X-ray diffraction, temperature programmed reduction and surface area suggest for Sn contents of 1, 5 and 10 wt%, the formation of a highly dispersed unstable SnS phase which is readily oxidized by air at room temperature to form SnO2 on the TiO2 surface. The composite with Sn 30 wt% produced a mixture with the phases SnS/γ-Sn2S3 and SnO2. Photocatalytic experiments with the composites SnXn/TiO2 using the textile dye Drimaren red as a probe molecule showed a first-order reaction with rate constants kabsorbance for the composites with Sn 1 and 5% higher than pure TiO2 which was explained by the formation of the more active photocatalyst composite SnO2/TiO2.  相似文献   

11.
Thin films of nanocrystalline SnS2 on glass substrates were prepared from solution by dip coating and then sulfurized in H2S (H2S:Ar = 1:10) atmosphere. The films had an average thickness of 60 nm and were characterized by X-ray diffraction studies, scanning electron microscopy, EDAX, transmission electron microscopy, UV-vis spectroscopy, and Raman spectroscopy. The influence of annealing temperature (150-300 °C) on the crystallinity and particle size was studied. The effect of CTAB as a capping agent has been tested. X-ray diffraction analysis revealed the polycrystalline nature of the films with a preferential orientation along the c-axis. Optical transmission spectra indicated a marked blue shift of the absorption edge due to quantum confinement and optical band gap was found to vary from 3.5 to 3.0 eV with annealing temperature. Raman studies indicated a prominent broad peak at ∼314 cm−1, which confirmed the presence of nanocrystalline SnS2 phase.  相似文献   

12.
0.60Na2O-0.40P2O5 and (0.55−z)Na2O-0.05Bi2O3-zTiO2-0.40P2O5 glasses (0≤z≤0.15) were prepared by melting at 1000°C mixtures of Na2CO3, Bi2O3, TiO2 and (NH4)2HPO4. Differential Scanning Calorimetry (DSC) measurements give the variation of glass transition temperature (Tg) from 269°C (for 0.60Na2O-0.40P2O5) to 440°C (for z=0.15). The density measurements increases from 2.25 to 3.01 g/cm3. FTIR spectroscopy shows the evolution of the phosphate skeleton: (PO3) chains for 0.60Na2O-0.40P2O5 to P2O74− groups in the glasses containing Bi2O3 or both Bi2O3 and TiO2. When bismuth oxide and titania are added to sodium phosphate glass, phosphate chains are depolymerized by the incorporation of distorted Bi(6) and Ti(6) units through POBi and POTi bonds. Bi2O3 and TiO2 are assumed to be present as six co-ordinated octahedral [BiO6/2]3−and [TiO6/2]2− units again with shared corners. This is accompanied by the simultaneous conversion of [POO3/2] into [PO4/2]+ units which achieves charge neutrality in the glasses.  相似文献   

13.
We report the room temperature spectroscopic ellipsometry study of Cu2ZnGeSe4 and Cu2ZnSiSe4 crystals, grown by modified Bridgman technique. Optical measurements were performed in the range 1.2–4.6 eV. The spectral dependence of the complex pseudodielectric functions as well as pseudo- complex refractive index, extinction coefficient, absorption coefficient, and normal-incidence reflectivity of Cu2ZnGeSe4 and Cu2ZnSiSe4 crystals were derived. The observed structures in the optical spectra were analyzed by Adachi's model and attributed to the band edge transitions and higher lying interband transitions. The parameters such as strength, threshold energy, and broadening, corresponding to the E0, E1A and E1B interband transitions, have been determined using the simulated annealing algorithm.  相似文献   

14.
Compact and grape-like bismuth oxide (Bi2O3) coated titania (Ti) anode was prepared by oxalic acid (H2C2O4) etching, electrodeposition and calcination in order to explore its photoelectrocatalytic activities. The Bi2O3 coating was demonstrated to be full of pores, and a good combination between Bi2O3 layer and honeycomb-like Ti substrate was observed by scanning electron microscopy. The characteristic morphology of Bi2O3 coating indicated that the electrode is stable during degradation. The Bi2O3/Ti electrode was used in oxidative degradation of Acid Orange 7 by electrolysis, photocatalytic oxidation and photoelectrocatalytic oxidation processes. The pseudo-first order kinetics parameter (Kapp) of photoelectrocatalytic process was 1.15 times of the sum of electrolysis and photocatalytic oxidation under visible light irradiation at 420 nm. The results indicated that the synergy of electrolysis and photocatalysis lead to an excellent photoelectrocatalytic property of the Bi2O3/Ti electrode.  相似文献   

15.
The three-dimensional hybrid compound Ni3(C4H4N2)3(V8O23) has been synthesized by mild hydrothermal methods under autogenous pressure at 170 °C. The structure of the phase is stable until 380 °C. The removal of the pyrazine molecules from the structure induces its collapse. The IR spectrum shows the vibration modes of the pyrazine molecule and those of the [VO4]3− groups. A UV-visible spectrum shows the characteristic bands of the Ni(II) d8-high-spin cation in a slightly distorted octahedral coordination. Magnetic measurements indicate the existence of antiferromagnetic interactions that can be fitted with a chain model to give g = 2.31, J/k = −5.3, and zJ′/k = −5.5.  相似文献   

16.
17.
The (C3H12N2)0.94[Mn1.50Fe1.50III(AsO4)F6] and (C3H12N2)0.75[Co1.50Fe1.50III(AsO4)F6] compounds 1 and 2 have been synthesized using mild hydrothermal conditions. These phases are isostructural with (C3H12N2)0.75[Fe1.5IIFe1.5III(AsO4)F6]. The compounds crystallize in the orthorhombic Imam space group. The unit cell parameters calculated by using the patterns matching routine of the FULPROOF program, starting from the cell parameters of the iron(II),(III) phase, are: a = 7.727(1) Å, b = 11.047(1) Å, c = 13.412(1) Å for 1 and a = 7.560(1) Å, b = 11.012(1) Å, c = 13.206(1) Å for 2, being Z = 8 in both compounds. The crystal structure consists of a three-dimensional framework constructed from edge-sharing [MII(1)2O2F8] (M = Mn, Co) dimeric octahedra linked to [FeIII(2)O2F4] octahedra through the F(1) anions and to the [AsO4] tetrahedra by the O(1) vertex. This network gives rise two kinds of chains, which are extended in perpendicular directions. Chain 1 is extended along the a-axis and chain 2 runs along the c-axis. These chains are linked by the F(1) and O(1) atoms and establish cavities delimited by eight or six polyhedra along the [1 0 0] and [0 0 1] directions, respectively. The propanediammonium cations are located inside these cavities. The thermal study indicates that the structures collapse with the calcination of the organic dication at 255 and 285 °C for 1 and 2, respectively. The Mössbauer spectra in the paramagnetic state indicate the existence of two crystallographically independent positions for the iron(III) cations and a small proportion of this cation in the positions of the divalent Mn(II) and Co(II) ones. The IR spectrum shows the protonated bands of the H2N- groups of the propanediamine molecule and the characteristic bands of the [AsO4]3− arsenate oxoanions. In the diffuse reflectance spectra, it can be observed the bands characteristic of trivalent iron(III) cation and divalent Mn(II) and Co(II) ones in a distorted octahedral symmetry. The calculated Dq and B-Racah parameters for the cobalt(II) phase are 710 and 925 cm−1, respectively. The ESR spectra of compound 1 maintain isotropic with variation in temperature, being g = 1.99. Magnetic measurements for both compounds indicate that the main magnetic interactions are antiferromagnetic in nature. However, at low temperatures small ferromagnetic components are detected, which are probably due to a spin decompensation of the two different metallic cations. The hysteresis loops give values of the remnant magnetization and coercive field of 84.5, 255 emu/mol and 0.01, 0.225 T for phases 1 and 2, respectively.  相似文献   

18.
Crystals of 2(2-ammonium ethyl ammonium)ethanol sulfate monohydrate: (C4H14N2O)SO4·H2O abbreviated as AEESM, and 2(2-ammonium ethyl ammonium)ethanol sulfate: (C4H14N2O)SO4 abbreviated as AEES, have been prepared and grown at room temperature. These materials have the following unit cell dimensions (C4H14N2O)SO4·H2O: a = 16.116(6), b = 7.411(3), and c = 15.750(6) Å; (C4H14N2O)SO4: a = 8.1142(2), b = 10.6632(4), c = 9.9951(4) Å, and β = 99.433(3)°. Their space groups are Pbca and P21/c, respectively. The structures of these compounds have been determined by single-crystal X-ray data analysis. The AEESM structure is built up from infinite inorganic chains parallel to the b axis linked via Ow-H?O hydrogen bonds. These chains are interconnected by organic groups so as to build layers perpendicular to the c direction. The structure of AEES consists of a three-dimensional network of H-bonds connecting all its components. In the present work the crystal structures, thermal behavior and IR analysis of these two new compounds are described.  相似文献   

19.
Synthesis and characterization of CuInS2 powder sample prepared by a simple and convenient solvothermal method is reported. The influence of the variation of Cu/In molar ratio from 0.69 to 1.25 on the particle morphology, crystal structure and optical properties of CuInS2 samples was studied. The X-ray diffraction studies indicated that the samples were polycrystalline in nature. SEM images of the samples revealed that the copper-rich products were uniform microspheres with smooth surfaces, whereas microspheres formed by network of interconnected flakes were obtained for indium-rich products. The optical band gaps (Eg) of the products decreased from 1.60 to 1.43 eV with variation of Cu/In molar ratio. The variation of the Urbach tail width with Cu/In molar ratio indicated that the density of the defects is much higher for the indium-rich CuInS2, which was clearly revealed from Raman measurements.  相似文献   

20.
The electrical behavior of PrCrO3 ceramics prepared by citric acid route and sintered at 1200 °C has been characterized by a combination of permittivity measurements, and impedance spectroscopy (IS). The effective permittivity obtained in frequency range 100 Hz to 1 MHz and temperature range 80–300 K, exhibits giant permittivity value of 3 × 104 near room temperature. The response is similar to that observed for relaxor ferroelectrics. IS data analysis revealed the ceramics to be electrically heterogeneous semiconductor with room temperature resistivity <102 Ω m consisting of semiconducting grains with permittivity ?′ ∼ 100 and more resistive grain boundaries with effective permittivity ?′ ∼ 104. We conclude, therefore that grain boundary effect is the primary source for the high effective permittivity in PrCrO3 ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号