共查询到20条相似文献,搜索用时 12 毫秒
1.
Differential scanning calorimetry (DSC), infrared (IR) and direct current (DC) conductivity studies have been carried out on (100 − 2x)TeO2-xAg2O-xWO3 (7.5 ≤ x ≤ 30) glass system. The IR studies show that the structure of glass network consists of [TeO4], [TeO3]/[TeO3+1], [WO4] units. Thermal properties such as the glass transition (Tg), onset crystallization (To), thermal stability (ΔT), glass transition width (ΔTg), heat capacities in the glassy and liquid state (Cpg and Cpl), heat capacity change (ΔCp) and ratios Cpl/Cpg of the glass systems were calculated. The highest thermal stability (237 °C) obtained in 55TeO2-22.5Ag2O-22.5WO3 glass suggests that this new glass may be a potentially useful candidate material host for rare earth doped optical fibers. The DC conductivity of glasses was measured in temperature region 27-260 °C, the activation energy (Eact) values varied from 1.393 to 0.272 eV and for the temperature interval 170-260 °C, the values of conductivity (σ) of glasses varied from 8.79 × 10−9 to 1.47 × 10−6 S cm−1. 相似文献
2.
A ChahineM Et-tabirou 《Materials Research Bulletin》2002,37(12):1973-1979
(50−x)Na2O-xCuO-10Bi2O3-40P2O5 glasses (0≤x≤25) were prepared by melting at 900-1100°C mixtures of Na2CO3, Bi2O3, CuO and (NH4)2HPO4. DSC measurements give the variation of glass transition temperature Tg from 318 (x=0) to 378°C (x=25). FTIR spectroscopy shows the evolution of the phosphate skeleton: (PO3)∞ chains for 60Na2O-40P2O5 to P2O7 groups in the glass containing Bi2O3 or both Bi2O3 and CuO. When bismuth and copper oxides replace Na2O, phosphate chains are depolymerized by the incorporation of Bi2O3 and CuO through POBi and POCu bonds. P2O7 groups are predominant structural units in the richest CuO glass. The variation of Tg also supports these results. 相似文献
3.
4.
R.P. Sreekanth Chakradhar K.P. Ramesh J. Ramakrishna 《Materials Research Bulletin》2005,40(6):1028-1043
Electron paramagnetic resonance (EPR) and optical investigations have been performed in the mixed alkali borate xNa2O-(30 − x)K2O-60B2O3 (5 ≤ x ≤ 25) glasses doped with 10 mol% of vanadyl ions in order to look for the effect of ‘mixed alkalis’ on the spectral properties of the glasses. The observed EPR spectra have structures for x > 5 mol% which are characteristic of a hyperfine interaction arising from an unpaired electron with the 51V nucleus and it builds up in intensity as x increases. It is observed that the mixed alkali play a significant role in accommodating the vanadyl ions in these mixed alkali glasses and for x > 5 mol%, shows a well resolved hyperfine structure typical for isolated VO2+ ions. The spin-Hamiltonian parameters (g and A), the dipolar hyperfine coupling parameter (P) and Fermi contact interaction parameter (k) have been evaluated. It is observed that the spin-Hamiltonian parameters do not vary much with the change in composition. It is observed that with increase of x, an increase occurs in tetragonal distortion for VO2+. The number of spins (N) participating in resonance and the paramagnetic susceptibility (χ) have been calculated. It is observed that N and χ increase with x. The optical bandgap energies evaluated for these glasses slightly increase with x and reach a maximum around x = 20 and thereafter decrease showing the mixed alkali effect. Optical band gap energies obtained in the present work vary from 2.73 to 3.10 eV for both the direct and indirect transitions. The physical parameters of the glasses are also determined with respect to the composition. 相似文献
5.
T JermoumiMustapha Hafid N NiegischM Mennig A SabirN Toreis 《Materials Research Bulletin》2002,37(1):49-57
Experimental determination of the properties of less studied zinc-iron-phosphate glasses was investigated. Glasses of the general composition (50−x)ZnO-xFe2O3-50P2O5, mol%, with x=0, 10, 20, 30 and 40, was chosen for these investigations. These studies included, glass forming, glass density, thermal expansion coefficient, dilatometric softening temperature, an initial test of chemical durability and vibrational properties. It is shown that an Fe/P ratio of the compositions at about 0.6 and 0.8 and the O/P ratio at 3.4 and 3.8 could be considered as chemically durable phosphate candidates. 相似文献
6.
New lanthanum borate (La2O3-B2O3) glasses modified with divalent oxides, such as CaO, MgO and ZnO were investigated as potential low temperature dielectrics by understanding compositional dependence of dielectric properties and chemical leaching resistance. Firing behavior, such as densification and crystallization, depended strongly on the glass composition and is found to influence the resultant dielectric performance. Specifically, the dielectric composition of 20ZnO-20La2O3-60B2O3 glass with 40 wt% Al2O3 as a filler showed distinct enhancements of dielectric properties, i.e., k ∼ 8.3 and Q ∼ 1091 at the resonant frequency of 17.1 GHz, as a result of 850 °C firing. The result was believed related to earlier densification and unexpected evolvements of ZnAl2O4 and La(BO2)3 phases during firing. The Mg-containing glass sample was most stable in strong acid solutions and did not show any significant changes in microstructure even after 300 min exposure. The Ca-containing glass sample was not regarded as a promising candidate for low temperature dielectrics from the observed low quality factor and weak chemical durability. 相似文献
7.
Investigation of fast-ionic transport in the ternary system (Cu1−xAgxI)-(Ag2O)-(V2O5), (0.05≤x≤0.25)
The occurrence of fast-ionic conduction in the ternary system 40(Cu1−xAgxI)-40(Ag2O)-20(V2O5), (0.05≤x≤0.25) has been described. The formation of composite solid electrolyte materials comprising glassy and crystalline phases has been identified by means of X-ray diffraction analysis. Fourier transform infrared spectroscopic studies have confirmed the presence of VO43− and V2O74− groups in these new materials. Detailed thermal characterization of these materials carried out by differential scanning calorimetry has indicated the transition temperature of one of the reaction products viz., AgI. From the conductivity measurements carried out using the complex impedance analysis, the values of room temperature electrical conductivity (σRT) and activation energy for ionic migration in these materials are found to be of the order of 10−2 to 10−4 S cm−1 and 0.22-0.35 eV, respectively. The ionic transport number (ti) measurements made using Wagner’s polarization method and evaluation of silver ionic transport number (tAg+) by galvanic cell method have been used to estimate the extent of contribution of ionic conductivity especially due to silver ionic transport to the total conductivity observed in these materials. 相似文献
8.
The mixing enthalpies in the 0.8[xB2O3-(1 − x)SiO2]-0.2K2O glassy system with 0 ≤ x ≤ 1 have been deduced from accurate calorimetric measurements of solution enthalpies in acidic solvent at 298 K. The substitution of SiO2 by B2O3 corresponds to a negative enthalpic effect and suggests the absence of some glassy miscibility gap. The mixing enthalpies are of the same order of magnitude as mixing enthalpies usually found in molten salts. 相似文献
9.
Up to 10 at.% of copper readily substitutes for cerium in ceria. It is found that at oxygen partial pressures between 0.21 atm and 10−5 atm, CuxCe1−xO2−δ (0 ≤ x ≤ 0.10) solid solution behave as an oxide-ion electrolyte. Interestingly, Cu0.10Ce0.90O2−δ exhibits the oxide-ion conductivity of ca. 10−4 Ω−1 cm−1 at 600 °C at an oxygen partial pressure of 10−5 atm. 相似文献
10.
M. Kassem D. Le Coq M. Fourmentin F. Hindle M. Bokova A. Cuisset P. Masselin E. Bychkov 《Materials Research Bulletin》2011,46(2):210-215
The glass-forming region in the pseudo-ternary CdSe-AgI-As2Se3 system was determined. Measurements including differential scanning calorimetry (DSC), density, and X-ray diffraction were performed. The effect resulting from the addition of CdSe or AgI has been highlighted by examining three series of different base glasses. The characteristic temperatures of the glass samples, including glass transition (Tg), crystallisation (Tx), and melting (Tm) temperatures are reported and used to calculate their ΔT = Tx − Tg and their Hruby, Hr = (Tx − Tg)/(Tm − Tx), criteria. Evolution of the total electrical conductivity σ and the room temperature conductivity σ298 was also studied. The terahertz transparency domain in the 50-600 cm−1 region was pointed for different chalcogenide glasses (ChGs) and the potential of the THz spectroscopy was suggested to obtain structural information on ChGs. 相似文献
11.
In this paper, the influence of cationic substitutions at Mo site with Al3+, Fe3+, Mn4+, Nb5+ and V5+ ions on the structure, oxygen ion diffusion and electrical properties in La2Mo2O9 oxide-ion conductors have been investigated by X-ray diffraction method, dielectric relaxation technique and direct current conductivity measurement. Except for V5+ substitution all of these substitutions up to 5% cannot suppress the phase transition in La2Mo2O9. In the dielectric measurement, one prominent relaxation peak is observed in temperature spectrum as well as in frequency spectrum, which is associated with the short-distance diffusion of oxygen vacancies. The activation energy for oxygen ion diffusion is deduced as in the range of 1-1.1 eV for Al, Fe, Mn and Nb doped samples and 1.4-1.5 eV for V doped samples. All substituted samples have a higher conductivity than the un-doped compound. In the Al, Fe, Mn and Nb substituted materials the phase transition is not suppressed; however, K substitution at the La site can completely suppress the transition and maintains high conductivity at low temperature. 相似文献
12.
La2−xBaxMo2O9−x/2 (x ≤ 0.18) have been prepared by solid state reaction method. The lattice parameter of La2−xBaxMo2O9−x/2 (x ≤ 0.18) determined by XRD data refinement shows a linear dependence on the dopant Ba content x. For the specimen with a La/Ba molar ratio of 0.18-0.2, additional reflection of secondary phase exists in the XRD pattern, so the value of solubility limit for Ba in La2Mo2O9 is defined in range of 0.18 < x < 0.2. As the replacement degree of La3+ by Ba2+ increases, the bulk conductivity of La2−xBaxMo2O9−x/2 (x ≤ 0.18) decreases initially and then increases, a minimum value at La1.9Ba0.1Mo2O8.95 exists. Hebb-Wagner studies in argon atmosphere, which use an oxide-ion blocking electrode, show that La2−xBaxMo2O9−x/2 (x ≤ 0.18) are predominantly oxide-ion conducting in the temperature ranging from 773 to 1173 K. The average thermal expansion coefficient of La1.84Ba0.16Mo2O8.92 determined by high-temperature XRD was deduced as great as 17.5 × 10−6 K−1 between 298 and 1173 K. 相似文献
13.
All-solid-state cells of the configuration (−)Ag + SE//SE//I2-phenothiazine + C(+) using the best conducting compositions of the solid electrolyte systems, namely, Cu1−xAgxI-Ag2O-Y where x = 0.05, 0.1, 0.15, 0.2 and 0.25, Y = MoO3, B2O3, SeO2, V2O5 and CrO3, as the electrolytes were fabricated. Discharge, polarization and power characteristics of these cells were also evaluated. The open circuit voltage values of these cells were in the range 620-635 mV. The stability of these cells has been indicated by the constancy of their OCV over a period of 6 months. The polarization and discharge studies on these cells have shown that typical cells based on the electrolytes with Y = B2O3, SeO2 and V2O5 would possess discharge capacities of 12.84, 3.76 and 5.05 mA h and specific energy of 6.55, 1.81 and 2.77 W h kg−1, respectively. The solid electrolytes have good electrochemical stability and compatibility with the Ag/Phenothiazine-I2 electrode couple thus offering their suitability of application in microwatt power sources. 相似文献
14.
Crystalline Na3Bi2P3O12, K3Bi2P3O12 and glassy K3Bi2P3O12 compounds were prepared by solid-state reaction method. The prepared samples are characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry. The crystalline materials are found to be orthorhombic. The electrical conductivity measurements on the crystalline and glassy samples show that at ∼373 K, the σDC for crystalline K3Bi2P3O12 (0.81 × 10−8 S/cm) is about two orders of magnitude higher than the corresponding glassy phase (1.25 × 10−10 S/cm). The scaling results show that the conductivity relaxation mechanism is independent of temperature. 相似文献
15.
You Na Ko Dae Soo Jung Jung Hyun Kim Young Jun Hong Yun Chan Kang 《Materials Research Bulletin》2011,46(11):2112-2116
Nano-sized BaNd2Ti5O14 (BNT) powders were prepared by spray pyrolysis from solutions containing ethylenediaminetetraacetic acid and citric acid. Treatment at temperatures ≥900 °C and subsequent milling resulted in nanoparticle powders with orthorhombic crystal structures. The mean particle size of the powder post-treated at 1000 °C was 160 nm. Nano-sized Bi2O3–B2O3–ZnO–SiO2 glass powder with 33 nm average particle size was prepared by flame spray pyrolysis and used as a sintering agent for the BNT. BNT pellets sintered at 1100 °C without the glass had porous structures and fine grain sizes. Those similarly sintered with the glass had denser structures and larger grains. 相似文献
16.
We synthesized the spinel-type compounds belonging to the Mn2−xV1+xO4 series with x = 0, 1/3 and 1 as polycrystalline powders. Crystal and magnetic structures were refined using synchrotron X-ray and neutron powder diffraction. At 300 K all members crystallize in the cubic system, space group , and show a structural transition at low temperature, changing to a tetragonal symmetry (space group I41/amd). Cations distributions between octahedral and tetrahedral sites were refined from neutrons diffraction (ND) data and explained based on crystal field stabilization energies (CFSE) and ionic radii. The magnetic unit cell is the same as the crystallographic one, having identical symmetry relations. The magnetic structure was refined as an arrangement of collinear spins, antiferromagnetically ordered, parallel to the c-axis of the unit cell. The refined site magnetic moments are smaller than those obtained from hysteresis cycles of the M vs. H measurements, indicating that some non-collinear disordered component coexists with the ordered component along the c-axis. 相似文献
17.
ZnO-(1 − x)TiO2-xSnO2 (x = 0.04-0.2) ceramics were prepared by conventional mixed-oxide method combined with a chemical processing. Fine particle powders were prepared by chemical processing to activate the formation of compound and to improve the sinterability. One wt.% of V2O5 and B2O3 with the mole ratios of 3:1 were used to lower the sintering temperature of ceramics. The effect of Sn content on phase structure and dielectric properties were investigated. The results show that the substituting Sn for Ti accelerates the hexagonal phase transition to cubic phase, and an inverse spinel structure Zn2(Ti1−xSnx)O4 solid solution forms. The best dielectric properties obtained at x = 0.12. The ZnO-0.88TiO2-0.12SnO2 ceramics sintered at 900 °C exhibit a good dielectric property: ?r = 29 and tan δ = 9.86 × 10−5. Due to their good dielectric properties, low firing characteristics, ZnO-(1 − x)TiO2-xSnO2 (x = 0.04-0.2) can serve as the promising microwave dielectric capacitor. 相似文献
18.
The electrical conductivity of SrSn1−xFexO3−δ increases with the Fe content and reaches a value of ∼10−1 S/cm at 25°C at x=1. Compounds with low Fe content exhibit both ionic and electronic conductivity, while the higher Fe content perovskites are mainly electronic conductors with a conductivity independent of the oxygen partial pressure over a wide range from 0.21 to 10−22 atm. 相似文献
19.
(5 − x)BaO-xMgO-2Nb2O5 (x = 0.5 and 1; 5MBN and 10MBN) microwave ceramics prepared using a reaction-sintering process were investigated. Without any calcinations involved, the mixture of BaCO3, MgO, and Nb2O5 was pressed and sintered directly. MBN ceramics were produced after 2-6 h of sintering at 1350-1500 °C. The formation of (BaMg)5Nb4O15 was a major phase in producing 5MBN ceramics, and the formation of Ba(Mg1/3Nb2/3)O3 was a major phase in producing 10MBN ceramics. As CuO (1 wt%) was added, the sintering temperature dropped by more than 150 °C. We produced 5MBN ceramics with these dielectric properties: ?r = 36.69, Qf = 20,097 GHz, and τf = 61.1 ppm/°C, and 10MBN ceramics with these dielectric properties: ?r = 39.2, Qf = 43,878 GHz, and τf = 37.6 ppm/°C. The reaction-sintering process is a simple and effective method for producing (5 − x)BaO-xMgO-2Nb2O5 ceramics for applications in microwave dielectric resonators. 相似文献
20.
B. Harihara Venkataraman 《Materials Research Bulletin》2008,43(10):2592-2598
Glasses with the compositions of 40K2O-40Nb2O5-20SiO2 (in mol%) containing different concentrations (0.01, 1 and 2 mol%) of NiO were prepared by a melt quenching technique. The glasses were irradiated with a continuous wave Nd:YAG laser with a wavelength of 1064 nm, and a metastable crystalline phase of KNbO3 was obtained. In 2 mol% NiO-doped glass, lines with a width of ∼10 μm are successfully patterned by laser irradiations with a power of 0.9 W and a scanning speed of 15 μm/s. It is found from micro-Raman scattering spectra that the lines are composed of the metastable crystalline phase of KNbO3. The crystallization mechanism in Nd:YAG laser-induced crystallization in the glasses is discussed in comparison with the usual crystallization in an electric furnace. 相似文献