首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An X-ray powder diffraction study of the phase formation in the system V2O5/Nb2O5 is performed. Freeze-dried ammonium vanadate and ammonium oxalato niobate, alkoxide-derived xerogels and a mixture of active oxides are used as precursors to compare the resulting phase composition. Thermal decomposition of the freeze-dried precursor is monitored with DTA/TG and mass spectrometry. In the quasi-binary system V2O5-Nb2O5 metastable VNbO5, V4Nb18O55, VNb9O25 and solid solutions of V2O5 in TT-Nb2O5 as also thermodynamically stable VNb9O25 exist. The thermal decomposition of freeze-dried vanadate-oxalatoniobate solution allows the synthesis of all these phases in a relative simple manner. Structural relationships between an intermediate phase and the product, or, in the case of solid-state reactions, between one of the starting oxide and the product, favour the desired reaction. Therefore, the structure of a former phase influences or directs the structure of the product similar to a topotactic reaction.  相似文献   

2.
Acicular particles of KSr2Nb5O15, Sr0.5Ba0.5Nb2O6, and SrNb2O6 were synthesized in the SrO-BaO-Nb2O5 system, using KCl or SrCl2·6H2O salts. In the SrCl2·6H2O + Nb2O5 system, acicular SrNb2O6 particles were formed by a solid state reaction between the salt and Nb2O5. Large, irregularly shaped (Sr-rich) Sr2Nb2O7 particles formed with increasing reaction temperature and time. Small but finite solubility of SrO in the KCl + SrNb2O6 system favored the formation of acicular KSr2Nb5O15 and blade-like Sr2Nb2O7 particles (at higher temperatures). Uniformly sized, acicular KSr2Nb5O15 particles were easier to reproduce compared to the formation of acicular Sr0.5Ba0.5Nb2O6 and SrNb2O6 particles.  相似文献   

3.
Hollow micro-sized H2(H2O)Nb2O6 spheres constructed by nanocrystallites have been successfully synthesized via a bubble-template assisted hydrothermal process. In the reaction process, H2O2 acts as a bubble generator and plays a key role in the formation of the hollow structure. An in situ bubble-template mechanism has been proposed for the possible formation of the hollow structure. The spherelike assemblies of these H2(H2O)Nb2O6 nanoparticles have been transformed into their corresponding pseudohexagonal phase Nb2O5 through a moderate annealing dehydration process without destroying the hierarchical structure. Optical properties of the as-prepared hollow spheres were investigated. It is exciting that the absorption edge of the hollow Nb2O5 microspheres shifts about 18 nm to the violet compared with bulk powders in the UV/vis spectra, indicating its superior optical properties.  相似文献   

4.
Dion-Jacobson type layered perovskites such as A′Ca2Nb3O10 (A′ = K, Rb, H) have continued to be of great interest due to their compositional variability, rich interlayer chemistry, and wide range of physical properties. In this study, we investigated the range and effects of substitutional doping of Ta5+ for Nb5+ and of Sr2+ for Ca2+ in A′Ca2Nb3O10. We have prepared and characterized three new solid solutions: KCa2Nb3−xTaxO10, RbCa2Nb3−xTaxO10, and RbCa2−xSrxNb3O10. These materials all readily undergo proton exchange to form two new series of hydrated solid acid phases, which in most cases can be dehydrated to form stable HCa2Nb3−xTaxO10 and HCa2−xSrxNb3O10 compounds. Intercalation studies with n-hexylamine and pyridine were carried out to gauge the relative Brønsted acidities across the HCa2Nb3−xTaxO10 series, and we determined that materials with the highest tantalum contents are weaker acids than the parent compound HCa2Nb3O10. Preliminary intercalation studies with pyridine for the HCa2−xSrxNb3O10·yH2O solid acids, however, showed no significant difference in acidity with varying strontium content.  相似文献   

5.
Niobium oxide fluoride/niobium diboride (Nb3O7F/NbB2) heterostructures with urchin-like and nanowall-like morphologies were synthesized by a facile hydrothermal approach. The high-density one-dimensional Nb3O7F nanoneedle arrays and two-dimensional Nb3O7F nanosheets stand on the surface of NbB2 cores. Here a new idea is proposed to synthesize binary heterostructure by in situ “incomplete reaction”. Ultraviolet-visible spectra showed that such heterostructure has a wide absorption peak at around 270 nm and the absorption edge of the products synthesized at higher temperature shifts to longer wavelength because of stronger nanometric effect.  相似文献   

6.
Infrared spectra of gadolinium-lead-borate glasses of the xGd2O3·(100 − x)[3B2O3·PbO] system, where x = 0, 5, 10, 15, 25, 35 and 50 mol.%, have been recorded to explore the role of content of gadolinium ions behaving as glass modifier.The FTIR spectroscopy data for the xGd2O3·(1 − x)[3B2O3·PbO] glasses show the structural role of lead ions as a network-formers and of the gadolinium ions network modifiers. Adding of the rare earth ion up to 35 mol.% into the glass matrix, the IR bands characteristic to the studied glasses become sharper and more pronounced.Structural changes, as recognized by analyzing band shapes of IR spectra, revealed that Gd2O3 causes a change from the continuous borate network to the continuous lead-borate network interconnected through Pb-O-B and B-O-B bridges and the transformation of some tetrahedral [BO4] units into trigonal [BO3] units. Then, gadolinium ions have affinity towards [BO3] structural units which contain non-bridging oxygens necessary for the charge compensation because the more electronegative [BO3] structural units were implied in the formation of B-O-Gd bonds and the transformation of glass network into a glass ceramic.We propose a possible structural model of building blocks for the formation of continuous random 3B2O3·PbO network glass used by density functional theory (DFT) calculations.DFT calculations show that lead atoms occupy three different sites in the proposed model. The first is coordinated with six oxygen atoms forming distorted octahedral geometries. The second lead atom has an octahedral oxygen environment and the five longer Pb-O bonds are considered as participating in the metal coordination scheme. The third lead atom has ionic character. In agreement with the results offered by the experimental FTIR data, the theoretical IR data confirm that our proposed structure is highly possible.  相似文献   

7.
BaCe0.8Y0.2O3−δ and BaCe0.9−xYxNb0.1O3−δ (x = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35) were prepared by a solid-state reactions. It was found that the BaCe0.8Y0.2O3−δ samples decomposed into CeO2 and BaCO3 after being exposed in the atmosphere (3% CO2 + 3% H2O + 94% N2) at 700 °C for 10 h. However, samples containing Nb remains unchanged in the same conditions, demonstrating a better stability in the presence of CO2 and H2O. The conductivity of BaCe0.9−xYxNb0.1O3−δ increased with the increase of Y content (x ≤ 0.30), and the highest value was observed at x = 0.30 where a significant decrease in conductivity took place at x = 0.35. The conductivity of BaCe0.6Y0.3Nb0.1O3−δ reaches 0.01 S/cm in humid hydrogen at 700 °C, slight lower than BaCe0.8Y0.2O3−δ, 0.012 S/cm in the same conditions. Fuel cell with BaCe0.6Y0.3Nb0.1O3−δ as-prepared was successfully prepared and humidified hydrogen was supplied as fuels in evaluating the fuel cell performance. The open circuit voltage, peak power density and interfacial resistance at 700 °C were 1.02 V, 345 mW/cm2 and 0.27 Ω cm2, respectively.  相似文献   

8.
Ferrite (Ni0.6Co0.4Fe2O4) phase, ferroelectric (Pb(Mg1/3Nb2/3)0.67Ti0.33O3) phase and magnetoelectric composites of (x)Ni0.6Co0.4Fe2O4 + (1 − x)Pb(Mg1/3Nb2/3)0.67Ti0.33O3 with x = 0.15, 0.30 and 0.45 were prepared using solid-state reaction technique. Presence of Ni0.6Co0.4Fe2O4 and Pb(Mg1/3Nb2/3)0.67Ti0.33O3 was confirmed using X-ray diffraction technique. The scanning electron microscopic images were used to study the microstructure of the composites. Connectivity scheme present in the magnetoelectric (ME) composites are discussed from the microscopic images. Variation of dielectric constant and dielectric loss with temperature for all the composites was studied. Here we report the effect of Ni0.6Co0.4Fe2O4 mole fraction on connectivity schemes between Ni0.6Co0.4Fe2O4 and Pb(Mg1/3Nb2/3)0.67Ti0.33O3 composite. The variation of magnetoelectric voltage coefficient with dc magnetic field shows peak behaviour. The maximum value of magnetoelectric voltage coefficient of 9.47 mV/cm Oe was obtained for 0.15Ni0.6Co0.4Fe2O4 + 0.85Pb(Mg1/3Nb2/3)0.67Ti0.33O3 composites. Finally we have co-related the effect of Ni0.6Co0.4Fe2O4 content and dielectric properties on magnetoelectric voltage coefficient.  相似文献   

9.
Oxides belonging to the families Ba3ZnTa2−xNbxO9 and Ba3MgTa2−xNbxO9 were synthesized by the solid state reaction route. Sintering temperatures of 1300°C led to oxides with disordered (cubic) perovskite structure. However, on sintering at 1425°C hexagonally ordered structures were obtained for Ba3MgTa2−xNbxO9 over the entire range (0≤x≤1) of composition, while for Ba3ZnTa2−xNbxO9 the ordered structure exists in a limited range (0≤x≤0.5). The dielectric constant is close to 30 for the Ba3ZnTa2−xNbxO9 family of oxides while the Mg analogues have lower dielectric constant of ∼18 in the range 50 Hz to 500 kHz. At microwave frequencies (5-7 GHz) dielectric constant increases with increase in niobium concentration (22-26) for Ba3ZnTa2−xNbxO9; for Ba3MgTa2−xNbxO9 it varies between 12 and 14. The “Zn” compounds have much higher quality factors and lower temperature coefficient of resonant frequency compared to the “Mg” analogues.  相似文献   

10.
Nano-sized Sr0.5Ba0.5Nb2O6 (SBN50) ceramic powders have been synthesized by an aqueous organic gel route. Homogeneous Sr-Ba-Nb precursor gels are prepared with Ba-EDTA, Sr-EDTA, and Nb-citrate complex as source of Sr, Ba, and Nb, respectively. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used as the chelating agents. The structural variation of the SBN powder with annealing temperature was studied by TG-DTA, FT-IR and XRD. The precursor gel on calcination at 800 °C for 2 h produces a pure tungsten bronze SBN phase and the corresponding average particle size is 30-50 nm. The influences of the pH and the molar ratio of citric acid:Nb cation on the formation of homogeneous Sr-Ba-Nb precursor gels were also studied. The results show that a homogeneous Sr-Ba-Nb precursor gel with no precipitate is formed at pH 8 and the optimum molar ratio of citric acid and the metal cations is 3:1.  相似文献   

11.
The Ba3ZnTa2O9 (BZT) and Ba3MgTa2O9 (BMT) ceramics, a family of A3B2+B5+2O9 complex perovskites, are extensively utilized in mobile based technologies due to their intrinsic high unloaded quality factor, high dielectric constant and a low (near-zero) resonant frequency temperature coefficient at microwave frequencies. The preparation conditions as well as size and nature of B cations have a profound effect on the final dielectric properties. In this article, we report the effect of Nb5+ at the Ta5+ site on the BMT structure prepared at four synthesis temperatures (1300, 1400, 1500 and 1600 °C). The analysis has been carried out using the Rietveld technique on the X-ray powder diffraction data. Results suggest that both the preparation temperatures and Nb5+ content have significant effect on the ordering of B cations in the Ba3Mg(Ta1−xNbx)2O9 solid solution. A disordered (cubic) structure is preferred by the 1300 °C compounds. The weight percentage of the ordered (trigonal) phase escalates, for a given composition, with increasing calcination temperature. A fully ordered trigonal arrangement exists only for x = 0.0 and 0.2 compounds calcined at 1600 °C, and the rest are biphasic (cubic and trigonal). The increase in the cubic fraction upon Nb5+ augmentation suggests that the solid solution leans more toward the disordered structural arrangement of B2+ and B5+ cations.  相似文献   

12.
13.
《Materials Research Bulletin》2013,48(11):4655-4660
High quality Fe3O4/carbon core–shells and shell–core nanoparticles have been successfully synthesized by depositing an epitaxial growth of Fe3O4 or carbon shell onto carbon or Fe3O4 nanocore. By employing the agents such as aryl sulfonyl acetic acid and glucose, Fe3O4 and carbon in a nanoscale was prepared from iron aryl sulfonyl acetate and then by the solvothermal reaction of glucose in a reverse microemulsion. The advantages of present approach rely not only on its simplicity, rapidity, and efficiency of the procedure, but also the formation of the controlled core–shell structures as well. It is highly suitable for further applications. Different core–shell structure controls could be attained by careful adjustment of the procedure sequences of decarboxylation and solvothermal reaction. The magnetic studies show that Fe3O4/carbon core–shell and shell–core nanoparticles found to be superparamagnetic. The characteristic differences in the core–shell structures would lead to the change of magnetization behaviors of Fe3O4 nanoparticles.  相似文献   

14.
Perovskite-type KNbO3 powder was prepared by hydrothermal reaction using Nb2O5 in KOH solution. A single phase of KNbO3 was obtained when the molar ratio of KOH/Nb2O5 was above 20 and the reaction temperature was above 160 °C. Three types of KNbO3 powder with the orthorhombic, tetragonal and cubic symmetries were obtained, depending on the reaction temperature and the ratio of KOH/Nb2O5. The molar ratios of K/Nb in the cubic and tetragonal phases were 0.91 and 0.94, respectively and that of the orthorhombic one was 0.98, and the mass loss was observed in the TG curves of tetragonal and cubic phases. The tetragonal and cubic phases were stabilized by OH and adsorbed water.  相似文献   

15.
The present work is devoted to monitor the reactivity with hydrogen of various oxide systems (Nb2O5, WO3 and a mixed Mg/Nb/O oxide) in the aim of understanding the role of oxides as promoters for hydrogen storage in MgH2. The reactivity of the oxides has been tested using either molecular hydrogen or “nascent” hydrogen produced by reaction of zinc with hydrochloric acid. Thermal desorption-mass spectrometry experiments indicate that hydrogen adsorbed in Nb2O5 and Mg/Nb/O mixed oxides is, in part, reversibly released and, for a second fraction, released as water. By contrast, water is the only product desorbed by WO3 after contact with hydrogen. This could explain the higher performances of Nb2O5 as kinetic promoter of hydrogen storage in comparison with WO3.  相似文献   

16.
Electrochemically anodized TiO2 nanotube (NT) arrays on Ti foils have been in great interests recently attributing to the wide applications. The net growth rate of TiO2 NT array is determined by electrochemical etching of Ti foil and chemical dissolution of the formed TiO2 NTs. While the TiO2 NT growth becomes a diffusion controlled process after certain growth time. Here, we report the influence of ultrasound on the growth process of TiO2 NT arrays. The results indicate that ultrasound can significantly alter the relative rates of these reactions and adjust the geometries of the TiO2 NT arrays.  相似文献   

17.
Single crystals of two niobates, KBa2Nb5O15 and LaK2Nb5O15, were synthesized by high-temperature reaction and the crystal structures were determined by single crystal X-ray diffraction data. Although the space groups for these compounds were different (the non-centrosymmetrical space group P4bm (#100) for KBa2Nb5O15 and the centrosymmetrical one P4/mbm (#127) for LaK2Nb5O15), both compounds had the same tetragonal tungsten bronze-type (hereafter TTB-type) structure. The lattice parameters and R-factors of KBa2Nb5O15 (LaK2Nb5O15) were a = 12.533(2) (12.563(2)) and c = 4.0074(9) (3.9179(9)) Å, and R1 = 0.040 (0.047) and wR2=0.131 (0.120), respectively. From the crystal structural analysis, it was clarified that distribution of two large cations was different from each other in the way that K and Ba atoms in KBa2Nb5O15 were distributed statistically at two crystallographic sites and K and La atoms in LaK2Nb5O15 were ordered.  相似文献   

18.
Lead magnesium niobate-lead titanate (PMN-PT) ceramic fibres with the nominal composition of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 have been fabricated by a modified sol-gel method. Due to the difficulty of dissolving the magnesium component, the mixed oxide method was used together with the traditional sol-gel method. To obtain crack-free fibres, pyrolysis was carried out at a very slow heating rate under specific atmosphere to control the organic burnout. The thermal and microstructural properties were investigated using thermogravimetric analysis, scanning electron microscopy and X-ray diffraction. The optimum sintering temperature is 1200 °C and yields a fibre with a final diameter of around 100 μm. A single PMN-PT fibre has been poled and its electrical properties were measured. The properties of the fibre are found to be better than that of a ceramic disc.  相似文献   

19.
The effects of MnO2 addition on the piezoelectric properties in Pb(Mg1/3Nb2/3)O3 relaxor ferroelectrics were studied in the ferroelectricity-dominated temperature range from −40 to 30°C. Dielectric, piezoelectric, and electrostrictive properties were examined to clarify the effect of MnO2 addition. As an added amount of MnO2 increases, the dielectric constant decreases and the mechanical quality factor increases in Pb(Mg1/3Nb2/3)O3. From the experimental results, it has been found that Mn behaves as a ferroelectric domain pinning element.  相似文献   

20.
Aliovalent Bi was substituted for Pb in Pb(Mg1/3Nb2/3)O3 with required alteration in the Mg/Nb ratio. Resultant changes in the perovskite developments, lattice parameters as well as dielectric characteristics were investigated. Powders were prepared via a two-step B-site precursor route to enhance the perovskite formation. The perovskite structure persisted up to the range of 30 mol% Bi(Mg2/3Nb1/3)O3 substitution. Values of the maximum dielectric constant decreased drastically, while the dielectric maximum temperatures changed only moderately. Meanwhile, the diffuseness exponent values decreased continuously with the Bi modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号