首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
4ZnO·B2O3·H2O is commonly used as a flame-retardant filler in composite materials. The microstructure of the powder is of importance in its applications. In our study, for the first time, one-dimensional (1D) nanostructure of 4ZnO·B2O3·H2O with rectangle rod-like shape has been synthesized by a hydrothermal route in the presence of surfactant polyethylene glycol-300 (PEG-300). The nanorods have been characterized by X-ray powder diffraction (XRD), inductively coupled plasma with atomic emission spectroscopy (ICP-AES), thermogravimetry (TG) and differential thermal analysis (DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with selected area electron diffraction (SAED) as well as high-resolution transmission electron microscopy (HRTEM). These nanorods are about 70 nm in thickness, 150-800 nm in width and have lengths up to a few microns. 4ZnO·B2O3·H2O nanorods crystallize in the monoclinic space group P21/m, a = 6.8871(19) Å, b = 4.9318(10) Å, c = 5.7137(16) Å, β = 98.81(21)° and V = 191.779(71) Å3.  相似文献   

2.
Long afterglow phosphors (Ca1−xEux)2MgSi2O7 (0.002 ≤ x ≤ 0.02) were prepared by solid-state reactions under a weak reductive atmosphere. X-ray diffraction pattern, photoluminescence spectra, decay curve, afterglow spectra and thermoluminescence curves were investigated. The phosphors showed two emission peaks when they were excited by 343 nm, due to two types of Eu2+ centers existing in the Ca2MgSi2O7 lattice. However, only one emission peak can be found in their afterglow spectra. Energy transfer between Eu2+ ions in inequivalent sites was found. A possible mechanism was presented and discussed. The afterglow decay time of Ca1.998MgSi2O7:Eu0.002 was nearly 12.5 h which means it was a good long lasting phosphor.  相似文献   

3.
The crystal structure of Ca0.28Ba0.72Nb2O6 (CBN-28) crystal with Nd-doping has been determined from X-ray single crystal diffraction data, in the tetragonal system with space group P4bm and the following parameters: a = b = 12.458 Å, c = 3.954 Å, V = 613.688 Å3, and Z = 5. X-ray diffraction results on a Nd-doped CBN-28 single crystal also have demonstrated that Nd3+ and Ca2+ occupy the same site in the crystal structure. Dielectric and ferroelectric measurements have been performed. Transition from ferroelectric to paraelectric at around 223 °C has been observed. The Nd-doped crystal has a lower Curie temperature (Tm) than that of undoped CBN-28 crystal. The spontaneous polarization (Ps) and coercive electric field (Ec) also decrease compared with their values in the undoped CBN-28 crystal.  相似文献   

4.
The luminescent properties of Ca2Gd8(1−x)(SiO4)6O2:xDy3+ (1% ≤ x ≤ 5%) powder crystals with oxyapatite structure were investigated under vacuum ultraviolet excitation. In the excitation spectrum, the peaks at 166 nm and 191 nm of the vacuum ultraviolet region can be assigned to the O2− → Gd3+, and O2− → Dy3+ charge transfer band respectively, which is consistent with the theoretical calculated value using Jφrgensen's empirical formula. While the peaks at 183 nm and 289 nm are attributed to the f-d spin-allowed transitions and the f-d spin-forbidden transitions of Dy3+ in the host lattice with Dorenbos's expression. According to the emission spectra, all the samples exhibited excellent white emission under 172 nm excitation and the best calculated chromaticity coordinate was 0.335, 0.338, which indicates that the Ca2Gd8(SiO4)6O2:Dy3+ phosphor could be considered as a potential candidate for Hg-free lamps application.  相似文献   

5.
The subsolidus phase equilibria of the Li2O-Ta2O5-B2O3, K2O-Ta2O5-B2O3 and Li2O-WO3-B2O3 systems have been investigated mainly by means of the powder X-ray diffraction method. Two ternary compounds, KTaB2O6 and K3Ta3B2O12 were confirmed in the system K2O-Ta2O5-B2O3. Crystal structure of compound KTaB2O6 has been refined from X-ray powder diffraction data using the Rietveld method. The compound crystallizes in the orthorhombic, space group Pmn21 (No. 31), with lattice parameters a = 7.3253(4) Å, b = 3.8402(2) Å, c = 9.3040(5) Å, z = 2 and Dcalc = 4.283 g/cm3. The powder second harmonic generation (SHG) coefficients of KTaB2O6 and K3Ta3B2O12 were five times and two times as large as that of KH2PO4 (KDP), respectively.  相似文献   

6.
A series of yellow-emitting phosphors based on a silicate host matrix, Ca3 − xSi2O7: xEu2+, was prepared by solid-state reaction method. The structure and photoluminescent properties of the phosphors were investigated. The XRD results show that the Eu2+ substitution of Ca2+ does not change the structure of Ca3Si2O7 host and there is no impurity phase for x < 0.12. The SEM images display that phosphors aggregate obviously and the shape of the phosphor particle is irregular. The EDX results reveal that the phosphors consist of Ca, Si, O, Eu and the concentration of these elements is close to the stoichiometric composition. The Ca3 − xSi2O7: xEu2+ phosphors can be excited at a wavelength of 300-490 nm, which is suitable for the emission band of near ultraviolet or blue light-emitting-diode (LED) chips. The phosphors exhibit a broad emission region from 520 to 650 nm and the emission peak centered at 568 nm. In addition, the shape and the position of the emission peak are not influenced by the Eu2+ concentration and excitation wavelength. The phosphor for x = 0.045 has the strongest excitation and emission intensity, and the Ca3 − xSi2O7: xEu2+ phosphors can be used as candidates for the white LEDs.  相似文献   

7.
The blue-emitting phosphors Ca(4−x)EuxSi2O7F2 (0 < x ? 0.05) have been prepared by solid-state reaction and the photoluminescence properties have been studied systematically. The electronic structure of calcium fluoride silicate Ca4Si2O7F2 was calculated using the CASTEP code. The calculation results of electronic structure show that Ca4Si2O7F2 has an indirect band gap with 5 eV. The top of the valence band is dominated by O 2p and Si 3p states, while the bottom of the conduction band is mainly composed of Ca 3d states. Under the 350 nm excitation, the obtained sample shows a broad emission band in the wavelength range of 400-500 nm with peaks of 413 nm and 460 nm from two different luminescence centers, respectively. The relative intensity of the two peaks changes with the alteration of the Eu2+ concentration. The strong excitation bands of the powder in the wavelength range of 200-420 nm are favorable properties for the application as lighting-emitting-diode conversion phosphor.  相似文献   

8.
The new lead vanadium phosphate Pb1.5V2(PO4)3 was synthesized by solid state reaction and characterized by X-ray powder diffraction, electron microscopy, and magnetic susceptibility measurements. The crystal structure of Pb1.5V2(PO4)3 (a = 9.78182(8) Å, S.G. P213, Z = 4) was determined from X-ray powder diffraction data and belongs to the langbeinite-type structures. It is formed by corner-linked V3+O6 octahedra and tetrahedral phosphate groups resulting in a three-dimensional framework. The lead atoms are situated in the structure interstices and only partially occupy their positions. An electron microscopy study confirmed the structure solution. Magnetic susceptibility measurements revealed Curie-Weiss (CW) behavior for Pb1.5V2(PO4)3 at high temperature whereas at around 14 K an abrupt increase on the susceptibility was observed.  相似文献   

9.
The new complex vanadium oxide K2SrV3O9 has been synthesized and investigated by means of X-ray powder diffraction (XPD), electron microscopy and magnetic susceptibility measurements. The oxide has an orthorhombic unit cell with lattice parameters a = 10.1922(2) Å, b = 5.4171(1) Å, c = 16.1425(3) Å, space group Pnma and Z = 4. The crystal structure of K2SrV3O9 has been refined by Rietveld method using X-ray powder diffraction data. The structure contains infinite chains built by V4+O5 square pyramids linked to each other via VO4 tetrahedra. The chains form layers and potassium and strontium cations orderly occupy structural interstices between these layers. Electron diffraction as well as high resolution electron microscopy confirmed the structure solution. Magnetic susceptibility measurements revealed an antiferromagnetic interaction with J of the order of 100 K inside the chains and no long-range magnetic order above 2 K. The origin of the magnetic exchange is likely a result of super-exchange interaction through the two VO4 tetrahedra linking the polyhedra with the magnetic V4+ cations.  相似文献   

10.
In the present work we report on the structural and electrical properties of metal-oxide-semiconductor (MOS) devices with HfO2/Dy2O3 gate stack dielectrics, deposited by molecular beam deposition on p-type germanium (Ge) substrates. Structural characterization by means of high-resolution Transmission Electron Microscopy (TEM) and X-ray diffraction measurements demonstrate the nanocrystalline nature of the films. Moreover, the interpretation of the X-ray reflectivity measurements reveals the spontaneous growth of an ultrathin germanium oxide interfacial layer which was also confirmed by TEM. Subsequent electrical characterization measurements on Pt/HfO2/Dy2O3/p-Ge MOS diodes show that a combination of a thin Dy2O3 buffer layer with a thicker HfO2 on top can give very good results, such as equivalent oxide thickness values as low as 1.9 nm, low density of interfacial defects (2-5 × 1012 eV− 1 cm− 2) and leakage currents with typical current density values around 15 nA/cm2 at Vg = VFB − 1V.  相似文献   

11.
Cadmium vanadium oxides (Cd2V2O7) and Cadmium carbonates (CdCO3) were synthesized via a facile hydrothermal method. X-ray diffraction (XRD), Raman spectroscopy, infrared spectrometer (IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the structure, morphology and chemical state of the samples, respectively. The photoluminescence (PL) properties of the as-synthesized Cd2V2O7 and CdCO3 were measured at room temperature using an excitation wavelength of 325 nm. The Cd2V2O7 shows two visible light emission centers located at 589 and 637 nm, which are supposed to be relevant to local defects in Cd2V2O7. The CdCO3 shows three emission centers located at 408, 530 and 708 nm, which are supposed to be relevant to the electron transition from the conduction band to valence band and defect related energy level.  相似文献   

12.
Single crystals of R2Ir2O7 (R = Pr, Eu) have been synthesized using molten KF at 1373 K. The pyrochlore compounds crystallize in a cubic space group (No. 227, origin choice 2), with Z = 8. At room temperature, the lattice parameters are a = 10.3940(4) Å, V = 1122.92(7) Å3 and a = 10.274(3) Å, V = 1084.5(6) Å3 for Pr2Ir2O7 and Eu2Ir2O7, respectively. In this paper, we report the crystal growth of R2Ir2O7 (R = Pr, Eu) and their structure determinations from single crystal X-ray diffraction experiments at temperatures of 110, 115, and 298 K.  相似文献   

13.
The phase relation of the compounds prepared in the CaO-SnO2-SiO2 system at 1673 K and in the CaO-TiO2-SiO2 system at 1573 K was investigated in order to explore new Ti4+-activated stannate phosphors. Solid solutions of Ca(Sn1−xTix)SiO5 and Ca3(Sn1−yTiy)Si2O9 were synthesized at x = 0-1.0 and y = 0-0.10, respectively, and their crystal structures were analyzed by powder X-ray diffraction. Photoluminescence of these solid solutions was observed in a broad range of a visible light wavelength region under ultraviolet (UV) light excitation. The peaks of the emission band of Ca(Sn0.97Ti0.03)SiO5 and Ca3(Sn0.925Ti0.075)Si2O9 were at 510 nm under excitation of 252 nm and at 534 nm under excitation of 258 nm, respectively. The absorption edges estimated by the diffuse reflectance spectra were at 300 nm (4.1 eV) for CaSnSiO5 and at 270 nm (4.6 eV) for Ca3SnSi2O9, suggesting that the excitation levels in Ca(Sn1−xTix)SiO5 were above the band gap of the host, although the levels in Ca3(Sn1−yTiy)Si2O9 were within the band gap and near the conduction band edge.  相似文献   

14.
A new inorganic-organic hybrid material based on polyoxometallate, [L-C2H6NO2]3[(PO4)Mo12O36]·5H2O, has been successfully synthesized and characterized by single-crystal X-ray analysis, elemental analysis, infrared and ultraviolet spectroscopy, proton nuclear magnetic resonance and differential thermal analysis techniques. The title compound crystallizes in the monoclinic space group, P21/c, with a = 12.4938 (8) Å, b = 19.9326 (12) Å, c = 17.9270 (11) Å, β = 102.129 (1)°, V = 4364.8 (5) Å3, Z = 4 and R1(wR2) = 0.0513, 0.0877. The most remarkable structural feature of this hybrid can be described as two-dimensional inorganic infinite plane-like (2D/∞ [(PO4)Mo12O36]3−) which forming via weak Van der Waals interactions along the z axis. The characteristic band of the Keggin anion [(PO4)Mo12O36]3− appears at 210 nm in the UV spectrum. Thermal analysis indicates that the Keggin anion skeleton begins to decompose at 520 °C.  相似文献   

15.
Lanthanum acetylacetonate La(C5H7O2)3·xH2O has been used in the preparation of the precursor solution for the deposition of polycrystalline La2O3 thin films on Si(1 1 1) single crystalline substrates. The precursor chemistry of the as-prepared coating solution, precursor powder and precursor single crystal have been investigated by Fourier Transformed Infrared Spectroscopy (FTIR), differential thermal analysis coupled with quadrupole mass spectrometry (TG-DTA-QMS) and X-ray diffraction. The FTIR and X-ray diffraction analyses have revealed the complex nature of the coating solution due to the formation of a lanthanum propionate complex. The La2O3 thin films deposited by spin coating on Si(1 1 1) substrate exhibit good morphological and structural properties. The films heat treated at 800 °C crystallize in a hexagonal phase with the lattice parameters a = 3,89 Å and c = 6.33 Å, while at 900 °C the films contain both the hexagonal and cubic La2O3 phase.  相似文献   

16.
Nanocrystalline LiMn2O4 powders have been synthesized by combustion process in a single step using a novel fuel, l-alanine. Thermogravimetric analysis and differential thermal analysis of the gel indicate a sharp combustion at a temperature as low as 149 °C. Quantitative phase analysis of X-ray diffraction data shows about 97% of phase purity in the as-synthesized powder, which on further calcination at 700 °C becomes single phase LiMn2O4. High Brunauer, Emmett, and Teller surface area values obtained for ash (53 m2/g) and calcined powder (23 m2/g) indicate the ultrafine nature of the powder. Average crystallite size is found to be ∼60-70 nm from X-ray diffraction analysis and transmission electron microscopy. Fourier transformed infra-red spectrum shows two strong bands at 615 and 511 cm−1 originating from asymmetrical stretching of MnO6 octahedra. A nominal composition of Li0.88 Mn2O4 is calculated from the inductive coupled plasma analysis. From UV-vis spectroscopy, an optical band gap of 1.43 eV is estimated which is assigned to a transition between t2g and eg bands of Mn 3d. Electrochemical charge-discharge profiles show typical LiMn2O4 behavior with a specific capacity of 76 mAh/g.  相似文献   

17.
Eu3+-doped triple phosphate Ca8MgR(PO4)7 (R = La, Gd, Y) was synthesized by the general high temperature solid-state reaction. This phosphor was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and emission spectra. XRD and FT-IR analysis indicated that Ca8MgR(PO4)7 (R = La, Gd, Y) crystallized in single-phase component with whitlockite-like structure (space group R3c) of β-Ca3(PO4)2. Under the excitation of UV light, the phosphors show bright red emission assigned to the transition (5D0 → 7F2) at 612 nm. The crystallographic sites of Eu3+ ions in Ca8MgR(PO4)7 (R = La, Gd, Y) host were discussed on the base of site-selective excitation and emission spectra, luminescence decay and its host crystal structure.  相似文献   

18.
Juan Lu  Lude Lu  Xin Wang 《Materials Letters》2007,61(16):3425-3428
Large-scale bismuth sulfide (Bi2S3) nanorods with uniform size have been prepared by hydrothermal method using bismuth chloride (BiCl3) and sodium sulfide (Na2S·9H2O) as raw materials at 180 °C and pH = 1-2 for 12 h. The powder X-ray diffraction (XRD) pattern shows the Bi2S3 crystal belongs to the orthorhombic phase with calculated lattice constants a = 1.1187 nm, b = 1.1075 nm and c = 0.3976 nm. Furthermore, the quantification of X-ray photoelectron spectra (XPS) analysis peaks gives an atomic ratio of 1.9:3.0 for Bi:S. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopic (TEM) studies reveal that the appearance of the as-prepared Bi2S3 is rod-like with typical lengths in the range of 2-5 μm and diameters in the range of 10-30 nm. Finally the influences of the reaction conditions are discussed and a possible mechanism for the formation of Bi2S3 nanorods is proposed.  相似文献   

19.
The dependence of the bulk density, microstructure and dc electrical properties of bismuth oxide (Bi2O3)-based zinc oxide (ZnO) varistor ceramics for various samarium oxide (Sm2O3) contents was investigated. The value of bulk density was found to 5.43-5.50 g cm−3 with Sm2O3 (mol%) content. The maximum value of bulk density is observed to be 5.50 for 0.30 mol% Sm2O3 containing varistor ceramics. The grain sizes for all the samples calculated from the scanning electron micrographs were found to decrease as Sm2O3 increases. The presence of ZnO phases, Bi-rich phases, spinel phases and Sm2O3 phases were observed in the samples by the energy dispersive X-ray analysis and X-ray diffraction analysis. As the Sm2O3 amount increased in the Bi2O3-based ZnO varistor ceramics, the nonlinear coefficient, α increased up to 0.10 mol%, reaching a maximum value of 58 and then decreased. The breakdown electric field, Eb, increased with the increase of Sm2O3 content with a maximum value of 3220 V cm−1 for the 0.75 mol% Sm2O3 doped ZnO varistor ceramics. The leakage current, IL, showed a minimum value of 1.10 μA for the composition of 0.30 mol% Sm2O3 doped Bi2O3-based ZnO varistor ceramics. The 0.30 mol% Sm2O3-doped Bi2O3-based ZnO varistor ceramics sintered at 1200 °C exhibited a good stability for dc accelerated aging stress of 0.90 V1 mA/90 °C/12 h.  相似文献   

20.
Crystals of K2Hf2O5 and K4Hf5O12 were grown from molten potassium hydroxide flux. The crystal structures were determined by single-crystal X-ray diffraction. K2Hf2O5 crystallizes in the space group Pnna of the orthorhombic system, with unit cell dimensions of a = 5.780(1) Å, b = 10.640(2) Å, and c = 8.666(2) Å. This compound contains infinite chains of HfO6 octahedra that form a channel structure. K4Hf5O12 crystallizes in the space group of the trigonal system, with unit cell dimensions of a = 5.7877(2) Å and c = 10.3693(7) Å. This compound possesses a layered structure with six-coordinate Hf in three different coordination environments (trigonal prismatic, distorted octahedral, and regular octahedral).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号