共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we report on a nonaqueous synthesis of single crystalline anatase TiO2 nanorods by reaction between TiCl4 and benzyl alcohol at a low temperature of 80 °C. The resulting samples were characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy, nitrogen adsorption, X-ray photoelectron spectrometry and UV-vis diffuse reflectance spectroscopy. We proposed that the TiO2 nanorods were formed through an oriented attachment mechanism. More importantly, these single crystalline anatase TiO2 nanorods exhibited significantly higher photocatalytic activities than commercial photocatalyst P25. This study provides an environmentally friendly and economic approach to produce highly active TiO2 photocatalyst. 相似文献
2.
For the purpose of obtaining oxide thin films with high photocatalytic activity, we have successfully prepared the TiO2 anatase polycrystalline films with a two-dimensional spinodal phase-separated structure (2D-SPSS) in micron size by the sol-gel dip-coating method from a titanium tetraisopropoxide solution containing polyoxyethylene(20) nonylphenyl ether. It has been also found that TiO2 films with a variety of morphologies in addition to the 2D-SPSS can be formed by controlling the molar ratio of water to titanium tetraisopropoxide. The methylene blue photodegradation activity of the 2D-SPSS TiO2 film was higher than that of dense TiO2 film prepared from a TiO2 sol without co-existing polymer. This fact can be interpreted in terms of possessing a high specific surface area available for the photocatalytic reaction. 相似文献
3.
In this paper, ABO3-type perovskite LaFeO3 nanosized photocatalysts were synthesized by a sol-gel method, using citric acid (HOOCCH2C(OH)(COOH)CH2COOH) as complexing reagent and La(NO3)3·6H2O and Fe (NO3)3·9H2O as raw materials. The as-prepared samples also were characterized by several testing techniques, such as thermogravimetry-differential thermal analysis (TG-DTA), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET), infrared spectrum (IR), ultraviolet-visible diffuse reflection spectrum (UV-vis DRS), photoluminescence spectrum (PL), surface photovoltage spectroscopy (SPS) and electrical field induced surface photovoltage spectroscopy (EFISPS). The sample activity of different LaFeO3 nanoparticles for degrading Rhodamine B solution under visible irradiation (λ > 400 nm) was evaluated. The effects of thermal treatment temperature on photoinduced charge property and photocatalytic activity were mainly investigated, together with their relationships. The results show that the LaFeO3 sample calcined at 500 °C exhibits higher activity, and the activity decreases with increasing calcination temperature, which is in good agreement with the characterization results. The weaker is the PL and SPS signal, the higher is the photocatalytic activity. Moreover, the activity of all as-prepared LaFeO3 samples is higher than that of international P-25 TiO2 under visible irradiation. 相似文献
4.
A combined sol-gel and solvothermal process was introduced to fabricate the titania microspheres with hierarchical structures by using lauryl alcohol as the structure-directing agent. Scanning electron microscope, high-resolution transmission electron microscope, Fourier transform infrared spectrograph and powder X-ray powder diffraction indicated that the molar ratio of lauryl alcohol, water and tetra-n-butyl titanate was the key factor for the formation of the mono-dispersed titania with anatase phase and the optimal ratio was 1.2:4:1. The diameter of the end-product was 523 ± 74 nm and it was composed of smaller nanoparticles with about 6.8 nm size in diameter. Photocatalytic activity of the end-product was investigated by employing Rhodamine B and Methylene blue as the model compounds. The target microspheres exhibited the higher photocatalytic efficiency compared with commercial Degussa P25 titania and this result might be due to the hierarchical structures of microspheres according to the analysis of Brunauer-Emmett-Teller specific surface areas. 相似文献
5.
Nanoscale composite materials containing multi-walled carbon nanotubes (MWCNT) and titania were prepared by using a modified sol-gel method. The composites were comprehensively characterized by thermogravimetric analysis, nitrogen adsorption-desorption isotherm, powder X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis absorption spectroscopy. The analysis revealed the presence of titania crystallites of about 7.5 nm aggregated together with MWCNT in particles of 15-20 nm of diameter. The photoactivity of the prepared materials, under UV or visible irradiation, was tested using the conversion of phenol from model aqueous solutions as probe reaction. A synergy effect on the photocatalytic activities observed for the composite catalysts was discussed in terms of a strong interphase interaction between carbon and TiO2 phases by comparing the different roles of MWCNT in the composite materials. 相似文献
6.
A new-type composite photocatalyst of three-dimensional ordered macroporous (3DOM) TiO2/C was prepared and tested in this paper. 3DOM carbon materials were first prepared by colloidal crystal templating process, and then the sols of TiO2 from tetrabutyl titanate were infiltrated in the macroporous structures via capillary force. After calcinations at nitrogen flow, TiO2/C composite materials were prepared. The obtained samples were analyzed by SEM, TEM, XRD and BET. The results indicated that macroporous TiO2/C can remain the three-dimensional ordered structure and TiO2 nanoparticles distributed in the interior of macropores uniformly. Eventually, 3DOM TiO2/C materials were used as a new-type photocatalysts to decompose the methyl orange solution under ultraviolet light, which displayed excellent catalytic activity and regenerative ability. 相似文献
7.
Mesoporous-titania (TiO2) photocatalysts have been synthesized using polyethylene glycol (PEG) as a template in dilute acetic acid aqueous solution by hydrothermal process. The effect of PEG molecular weights and thermal treatment on the resultant structure and photocatalytic activity are investigated. Structural and phase compositional properties of the resultant photocatalysts are characterized by transmission electron microscopy, X-ray diffraction and nitrogen sorption analysis. When the molecular weights of PEG vary from 600 to 20,000, the particle sizes of mesoporous structure decrease from 15.1 to 13.3 nm and mean pore sizes increase from 6.9 to 10.6 nm. The chemical reactions of the formation of mesoporous-TiO2 during its synthesis have been proposed and discussed. The activities of mesoporous-TiO2 photocatalysts are evaluated and compared with Degussa P-25 using chloro-phenol as a testing compound. The reaction mechanism of photodegradation is also described on the basis of high performance liquid chromatography. 相似文献
8.
Sorapong Pavasupree Jaturong Jitputti Susumu Yoshikawa 《Materials Research Bulletin》2008,43(1):149-157
Mesoporous anatase TiO2 nanopowder was synthesized by hydrothermal method at 130 °C for 12 h. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), HRTEM, and Brunauer-Emmett-Teller (BET) surface area. The as-synthesized sample with narrow pore size distribution had average pore diameter about 3-4 nm. The specific BET surface area of the as-synthesized sample was about 193 m2/g. Mesoporous anatase TiO2 nanopowders (prepared by this study) showed higher photocatalytic activity than the nanorods TiO2, nanofibers TiO2 mesoporous TiO2, and commercial TiO2 nanoparticles (P-25, JRC-01, and JRC-03). The solar energy conversion efficiency (η) of the cell using the mesoporous anatase TiO2 was about 6.30% with the short-circuit current density (Jsc) of 13.28 mA/cm2, the open-circuit voltage (Voc) of 0.702 V and the fill factor (ff) of 0.676; while η of the cell using P-25 reached 5.82% with Jsc of 12.74 mA/cm2, Voc of 0.704 V and ff of 0.649. 相似文献
9.
The fabrication and photocatalytic application of zinc ferrite nanocrystals were reported. Quasi-cube ZnFe2O4 nanocrystals with typical small sizes of 5-15 nm were successfully synthesized by a facile hydrothermal approach. ZnFe2O4/P25 nanocomposite was prepared by physically grinding the ZnFe2O4 nanocrystals with TiO2 (commercial Degussa P25) at ambient temperature, and it exhibited excellent photocatalytic activity for the mineralization of Rhodamine B. UV-vis measurement and photocatalytic test results showed that ZnFe2O4 nanocrystals exhibited effective band-gap coupling to P25 nanopowders by simply physical grinding without any surface modification or high-energy balling, which is usually adopted in conventional mixture process. This phenomenon can be attributed to the high surface activities of the as-obtained tiny ZnFe2O4 nanocrystals and commercial P25 nanoparticles. It may imply that the mixing process of composite materials would be simplified by further lowering the grain sizes of their component particles. 相似文献
10.
Huiming Yin 《Materials Research Bulletin》2009,44(2):377-330
Nanocrystalline Bi3TiNbO9 powders were synthesized by a sol-gel process, based on a colloid solution of bismuth acetate, titanium butoxide and niobium ethoxide. X-ray diffraction analysis revealed that pure Aurivillius phase of Bi3TiNbO9 could be prepared at a calcination temperature of 500 °C. By using scanning electron microscopy and gas adsorption method, the morphology and the specific surface area of the powders were examined. The photophysical properties of Bi3TiNbO9 were investigated by means of the UV-visible diffuse reflectance spectrum, from which a band gap ∼3.2 eV was empirically calculated. The as-prepared Bi3TiNbO9 powders were applied in the photodegradation of organic contaminant for the first time, and they showed effective photocatalytic activity for the complete decomposition of methyl orange under UV light irradiation. 相似文献
11.
《Materials Research Bulletin》2013,48(11):4601-4605
Bi@Bi2O3@carboxylate-rich carbon core-shell nanosturctures (Bi@Bi2O3@CRCSs) have been synthesized via a one-step method. The core–shell nanosturctures of the as-prepared samples were confirmed by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Raman spectroscopy. The formation of Bi@Bi2O3@CRCSs core–shell nanosturctures should attribute to the synergetic roles of different functional groups of sodium gluconate. Bi@Bi2O3@CRCSs exhibits significant enhanced photocatalytic activity under visible light irradiation (λ > 420 nm) and shows an O2-dependent feature. According to trapping experiments of radicals and holes, hydroxyl radicals were not the main active oxidative species in the photocatalytic degradation of MB, but O2− are the main active oxidative species. 相似文献
12.
Ning Wang 《Materials Research Bulletin》2011,46(9):1372-1376
A nanocomposite of SnO2 nanoparticles coated on multi-walled carbon nanotube (MWNT@SnO2) was synthesized and characterized by thermogravimetric analysis, X-ray diffraction, transmission electron microscopy, nitrogen physisorption measurements, photoluminescence. The results show that the SnO2 nanoparticles with a narrow size of 4 nm are uniformly deposited on MWNT. The photocatalytic activity of the nanocomposite was studied using methyl orange as a model organic pollutant. MWNT@SnO2 exhibits much higher photocatalytic activity than that of commercial TiO2 (P-25). The promotion is mainly contributed from electron transfer between SnO2 and MWNT. 相似文献
13.
Preparation of Fe-doped TiO2 nanotube arrays and their photocatalytic activities under visible light 总被引:1,自引:0,他引:1
Fe-doped TiO2 nanotube arrays have been prepared by the template-based liquid phase deposition method. Their morphologies, structures and optical properties were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and UV-vis absorption spectroscopy. Their photocatalytic activities were evaluated by the degradation of methylene blue under visible light. The UV-vis absorption spectra of the Fe-doped TiO2 nanotube arrays showed a red shift and an enhancement of the absorption in the visible region compared to the undoped sample. The Fe-doped TiO2 nanotube arrays exhibited good photocatalytic activities under visible light irradiation, and the optimum dopant amount was found to be 5.9 at% in our experiments. 相似文献
14.
A novel kind of core-shell nanocomposite Gd2O3:Eu3+@mesoporous SiO2 was successfully fabricated, which consisted of a solvothermal synthesized Gd2O3:Eu3+ nanospheres core, a thin nonporous silica midterm layer and an ordered mesoporous silica shell. The XRD, SEM, TEM, FTIR, N2 adsorption/desorption and PL spectra were employed to characterize the composites. The cytotoxicity of Gd2O3:Eu3+@mesoporous SiO2 and Gd2O3:Eu3+ was assessed by the standard MTT assay. The composites had spherically monodisperse morphology and a narrow size distribution around 180 nm in diameter. Furthermore, they also demonstrated the strong photoluminescence of 5D0-7FJ emissions. In addition, the composites exhibited good property of sustained drug release by using ibuprofen (IBU) as model drug in the drug delivery process. Therefore, the drug release process could be easily tracked and identified through photoluminescence. Overall, the present composites have potential significant biomedical application as ideal bifunctional materials. 相似文献
15.
Xihong Hao Jiwei Zhai Zhenxing Yue Xiwen Song Shengli An 《Materials Research Bulletin》2011,46(3):420-423
In the present investigation (Pb0.5Ba0.5)ZrO3 (PBZ) thin films doped by K (KPBZ) from 0 to 5 mol% were successfully deposited on Pt-buffered silicon substrates by a sol-gel method. The K content dependence of microstructure and electrical properties of KPBZ thin films were studied in detail. It was found that, although all the films displayed a pure perovskite structure without obvious difference, the surface roughness of KPBZ films was decreased with increasing K content. Dielectric measurements showed that the figure of merit (FOM) values of KPBZ thin films were greatly increased by K-doping, and at the same time that the temperature-dependent stability was also improved. Thus, K doping is a promising way to optimize the overall electrical properties of PBZ thin films for potential application in tunable devices. 相似文献
16.
Ferroelectric Ba(Sn0.15Ti0.85)O3 (BTS) thin films were deposited on LaNiO3-coated silicon substrates via a sol-gel process. Films showed a strong (1 0 0) preferred orientation depending upon annealing temperature and concentration of the precursor solution. The dependence of dielectric and ferroelectric properties on film orientation has been studied. The leakage current density of thin films at 100 kV/cm was 7 × 10−7 A/cm2 and 5 × 10−5 A/cm2 and their capacitor tunability was 54 and 25% at an applied field of 200 kV/cm (measurement frequency of 1 MHz) for the thin films deposited with 0.1 and 0.4 M spin-on solution, respectively. This work clearly reveals the highly promising potential of BTS compared with BST films for application in tunable microwave devices. 相似文献
17.
Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thin films with thickness of 500 nm were successfully deposited on TiO2 buffered Pt(1 1 1)/Ti/SiO2/Si(1 0 0) and Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates via sol-gel process. Microstructure of Pb0.97La0.02(Zr0.95Ti0.05)O3 thin films was studied by X-ray diffraction analyses. The antiferroelectric nature of the Pb0.97La0.02(Zr0.95Ti0.05)O3 thin films was confirmed by the double hysteresis behaviors of polarization and double buffer fly response of dielectric constant versus applied voltage at room temperature. The capacitance-voltage behaviors of the Pb0.97La0.02(Zr0.95Ti0.05)O3 films with and without TiO2 buffer layer were studied, as a function of temperature. The temperature dependence of dielectric constant displayed a similar behavior and the Curie temperature (Tc) was 193 °C for films on both substrates. The current caused by the polarization and depolarization of polar in the Pb0.97La0.02(Zr0.95Ti0.05)O3 films was detected by current density-electric field measurement. 相似文献
18.
S.H. Hu J. Chen Z.G. Hu G.S. Wang X.J. Meng J.H. Chu N. Dai 《Materials Research Bulletin》2004,39(9):1223-1229
Bi3.25La0.75Ti3O12(BiLT) thin films with different thickness were successfully deposited onto fused quartz by chemical solution deposition. X-ray diffraction analysis shows that BiLT thin films are polycrystalline with (0 0 2)-preferred orientation. The dispersion of refractive indices of the BiLT thin films was investigated by the optical transmittance spectrum. The optical band gap energy was estimated from the graph of (hνα)2 versus hν. The results show that the refractive index and band-gap energy of the BiLT thin films decrease with the films thickness. 相似文献
19.
In this paper, we prepared the ZnO nanoparticles by a simple hydrothermal method and fabricated the ZnO/SiO2 core/shell nanostructures through a sol-gel chemistry process successfully. The hollow SiO2 nanostructures were obtained by selective removal of the ZnO cores. The structure, morphology and composition of the products were determined by the techniques of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The results indicated that the ZnO nanoparticles were sphere-like shape with the average size of 60 nm and belonged to hexagonal wurtzite crystal structure. With the coating of SiO2, the vibration modes of Si-O-Si and Si-OH were found. Furthermore, the measurement results of optical properties showed that spectra of bare ZnO nanoparticles and ZnO/SiO2 core/shell nanocomposites exhibited similar emission features, including a blue emission peak and an orange emission band. 相似文献
20.
Shao Wei Wang Wei LuNing Li Zhi Feng LiHong Wang Min WangXue Chu Shen 《Materials Research Bulletin》2002,37(10):1691-1697
Crack-free Bi2Ti2O7 thin films on silicon substrates were prepared using chemical solution decomposition technique, and then treated by rapid thermal annealing. The microstructure of the films was studied by scanning electron microscopy. The effects of different fabricating procedures and various annealing temperatures and times on the leakage current density were investigated. The results show that the leakage current density decreases with increasing annealing temperature, while increases with increasing annealing time. Annealing temperature has a much stronger effect on the insulating properties of Bi2Ti2O7 thin films than that of annealing time. 相似文献