首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new red emitting phosphor, Ca3(VO4)2:Eu3+; Mn2+, was synthesized by a citric acid sol-gel combustion method and characterized by XRD, TEM and photoluminescence (PL) spectra. The red emission located at about 613 nm was ascribed to 5D0-7F2 transition of Eu3+. And the red luminescence intensity changed with annealing temperature and concentration of Eu3+. The effect of the co-doped Mn2+ was also investigated systematically.  相似文献   

2.
Micrometric Zn1.8Mn0.2SiO4 phosphor powders prepared by spray pyrolysis have been annealed between 900 and 1200 °C under ambient air atmosphere to investigate their luminescence properties. Two original gas-solid fluidization processes have been tested in order to limit sintering phenomena, and the post-treated products have been compared with those annealed using a conventional process in crucible. The crystallinity, the size distribution, the outer morphology and the luminescence properties of powders before and after treatment have been analysed. Massive sintering phenomena occur in crucible from 1000 °C, whereas the original granulometry and spherical morphology are preserved till 1100 °C in fluidized bed. The luminescence efficiencies are comparable for the three processes and shown to be maximal after annealing at 1200 °C. It has been established that residual ZnO and manganese ions at oxidation state higher than 2+, still present after treatment at 1100 °C, are detrimental to good luminescence efficiency. Both disappear from samples post-treated at 1200 °C.  相似文献   

3.
Superfine powder SrLu2O4:Eu3+ was synthesized with a precursor prepared by an EDTA - sol-gel method at relatively low temperature using metal nitrate and EDTA as starting materials. The heat decomposition mechanism of the precursor, formation process of SrLu2O4:Eu3+and the properties of the particles were investigated by thermo-gravimetric (TG) - differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) analyses. The results show that pure SrLu2O4:Eu3+ superfine powder has been produced after the precursor was calcinated at 900 °C for 2 h and has an elliptical shape and an average diameter of 80-100 nm. Upon excitation with 250 nm light, all the SrLu2O4:Eu3+ powders show red and orange emissions due to the 4f-4f transitions of Eu3+ ions. The highest photoluminescence intensity at 610 nm was found at a content of about 6 mol% Eu3+. Splitting of the 5D0-7F1 emission transition revealed that the Eu3+ ions occupied two nonequivalent sites in the crystallite by substituting Lu3+ ions.  相似文献   

4.
Gd2Ti2O7: Eu3+ thin film phosphors were fabricated by a sol-gel process. X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 800 °C and the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free phosphor films were obtained, which mainly consisted of grains with an average size of 70 nm. The doped Eu3+ showed orange-red emission in crystalline Gd2Ti2O7 phosphor films due to an energy transfer from Gd2Ti2O7 host to them. Both the lifetimes and PL intensity of the Eu3+ increased with increasing the annealing temperature from 800 to 1000 °C, and the optimum concentrations for Eu3+ were determined to be 9 at.%. of Gd3+ in Gd2Ti2O7 film host.  相似文献   

5.
Eu2+ activated Ba2SiO4 phosphors were synthesized at 1573 K by solid-state reactions under a weak reductive atmosphere and systematically investigated by photoluminescence excitation and emission spectra, diffuse reflectance spectra, concentration quenching process and lifetime. The intensive green LEDs were fabricated by combining the synthesized phosphors with near-ultraviolet InGaN chips (λem = 395 nm). The Commission Internationale de I’Eclairage color coordinate of the fabricated LEDs is calculated to be x = 0.1904, y = 0.4751 under 20 mA forward-bias current. The dependence of the green LEDs on forward-bias currents shows that as the current increases, the relative intensity simultaneously increases and the color coordinate presents excellent stability, falling in the standard area of the Institute of Transportation Engineers for traffic lights and the Society of Automotive Engineers for automotive displays. These results indicate that the fabricated phosphor-converted green LEDs show great potential for traffic lights and automotive display applications.  相似文献   

6.
The silica coating of TiO2 fine particle was conducted using microwave assisted sol-gel method and conventional sol-gel method to suppress its photo-catalytic activity. The amount and uniformity of silica coating on TiO2 surface were characterized by X-ray photoelectron spectroscopy (XPS), X-ray fluorescence spectroscopy (XRF), infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and zeta potential measurements. XPS and XRF results showed that the presence of catalyst and reaction time were important factors to reach high silica amounts. SEM, TEM, and zeta potential results indicated that dense film coating of SiO2 layer formed on TiO2 surface in conventional sol-gel method, whereas the nucleation coating was observed on sample prepared by microwave assisted sol-gel method. When photo-catalytic activities and ultraviolet (UV) shielding abilities of these samples were evaluated, the sample prepared by microwave processing showed higher inhibition of photo-catalytic activity and better UV shielding ability than the sample prepared by conventional method. These results suggested that the coating method significantly affected the photo-catalytic activity and UV shielding ability of coated TiO2.  相似文献   

7.
The high-resolution luminescent spectrum of divalent samarium excited by 355 nm UV light at 77 K, the VUV excitation spectra, the VUV excited emission spectra and EXAFS at Sm-L3 edge were reported for samarium doped strontium borophosphate, SrBPO5:Sm prepared by solid state reaction in air at high temperature. The high-resolution luminescent spectrum showed that the divalent samarium ions occupied the C lattice sites. The VUV excitation spectra indicated that the sample exhibited absorption bands with the maxima at 129 and 148 nm, respectively. The performance of EXAFS at Sm-L3 absorption edge suggested that the samarium ions were nine-coordinated and the mean distances of bond SmO were 2.38 Å.  相似文献   

8.
We report the observation of long lasting red phosphorescence in Sr2SnO4:Sm3+ and Sr2SnO4:Sm3+, Dy3+ phosphors. The decay patterns of afterglow curves demonstrate that the afterglow time of Sr2SnO4:Sm3+ could be prolonged by the incorporation of Dy3+. The remarkable changes in the thermoluminescence glow curve exhibited that the first band responsible for the origin of the afterglow becomes the most prominent feature when Dy3+ added. In other words, the enhancement of the red afterglow in Sr2SnO4:Sm3+, Dy3+ compared with Sr2SnO4:Sm3+ could be ascribed to more appropriate traps (the hole-traps VSr) created by the incorporation of Dy3+.  相似文献   

9.
The structural properties of La2O3 and Al2O3-La2O3 binary oxides prepared by sol-gel were studied by XRD, HRTEM and UV-vis. The binary oxides with high lanthana contents show an amorphous structure after calcination at 650 °C. At calcination temperatures higher than 1000 °C there is a phase transformation from the amorphous state to the crystalline LaAlO3 with a perovskite structure. The structure of La2O3 is consistent with the hexagonal system; however, some crystalline microdomains with a monoclinic structure were detected by HRTEM. Islands of La2O3 and LaAl11O18 phases were detected at high lanthana concentration in the binary oxide. The modification in the coordination shell of the Al3+ cations due to the interaction with La3+ cations confirms the formation of phases with a perovskite structure and the presence of islands of the LaAl11O18 phase.  相似文献   

10.
SrMgF4 was prepared by precipitation in aqueous solution. Alkaline earth metal acetates and ammonium fluoride were used as precursors. After drying and annealing the samples at different temperatures and times, single phase SrMgF4 was obtained. By varying the annealing conditions, the mean crystallite size could be adjusted. Furthermore, the thermally treated samples displayed UV-excited intensive broad band luminescence in the visible region. The emissions colour and intensity can be adjusted by the tempering conditions. X-Ray diffraction, TEM-microscopy, fluorescence and IR-spectroscopy were used for analysis.  相似文献   

11.
A novel broadband emission phosphor Ca2KMg2V3O12 was first synthesized by solution combustion method. The X-ray diffraction showed that Ca2KMg2V3O12 phase can be obtained at 600-900 °C through combustion route. The crystal structure of this material was refined by Rietveld method using powder X-ray diffraction. It crystallizes in cubic system and belongs to space group Ia3d with z = 8, a = 0.12500 nm. The excitation band of Ca2KMg2V3O12 peaks at 320 nm in a region between 260 nm and 425 nm, and the emission spectrum exhibits an intense band centered at about 528 nm covering from 400 nm to 800 nm. The colour coordinates of samples prepared at different ignition temperatures are in a range of x = 0.323-0.339, y = 0.430-0.447.  相似文献   

12.
The photoluminescent properties of a series of Tb3+-doped Na3GdP2O8 phosphors excitable by vacuum ultraviolet and ultraviolet light are reported. The host related absorption, f-f and f-d transitions of Gd3+ and Tb3+, and charge transfer of O2− → Gd3+ and O2− → Tb3+ are assigned. Under 147 nm light excitation, Na3GdP2O8:Tb3+ phosphors show efficient green emissions with a dominant peak at 545 nm. The optimal sample Na3Gd0.4Tb0.6P2O8 shows a shorter decay time and a comparable brightness when compared with the commercial Zn2SiO4:Mn2+ green phosphor. These results demonstrate that it is a potential candidate for plasma display panels application.  相似文献   

13.
The Sr–Gehlenite (Sr2Al2SiO7) ceramic has been prepared by the conventional solid-state ceramic route. Phase pure Sr2Al2SiO7 (SAS) ceramic sintered at 1525 °C for 4 h has ?r = 7.2 and Qu × f = 33,000 GHz. The SAS showed large negative τf of −37.0 ppm/ °C. A low value of τf was achieved by preparing SAS–CaTiO3 composite. The composite with 0.04 volume fractions (Vf) CaTiO3 sintered at 1500 °C for 4 h showed good microwave dielectric properties: ?r = 8.6, Qu × f = 20,400 GHz and τf = +8.5 ppm/°C.  相似文献   

14.
Nanosized aluminum tungstate Al2(WO4)3 was prepared by co-precipitation reaction between Na2WO4 and Al(NO3)3 aqueous solutions. The powder size and shape, as well as size distribution are estimated after different conditions of powder preparation. The purity of the final product was investigated by XRD and DTA analyses, using the single crystal powder as reference. Between the specimen and the reference no difference was detected. The crystal structure of Al2(WO4)3 nanosized powder was confirmed by TEM (SAED, HRTEM). In additional, TEM locality allows to detect some W5O14 impurities, which are not visible by conventional X-ray powder diffraction and thermal analyses.  相似文献   

15.
One-dimensional (1D) Y2O3:Tb3+ and Gd2O3:Tb3+ microrods have been successfully prepared through a large-scale and facile hydrothermal method followed by a subsequent calcination process in N2/H2 mixed atmosphere. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR), thermogravimetric analysis (TGA), energy-dispersive X-ray spectra (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. The as-formed products via the hydrothermal process could transform to cubic Y2O3:Tb3+ and Gd2O3:Tb3+ with the same morphology and slight shrinking in size after a postannealing process. Both Y2O3:Tb3+ and Gd2O3:Tb3+ microrods exhibit strong green emission corresponding to 5D4 → 7F5 transition (542 nm) of Tb3+ under UV light excitation (307 and 258 nm, respectively), and low-voltage electron beam excitation (1.5 → 3.5 kV), which have potential applications in fluorescent lamps and field emission displays.  相似文献   

16.
A white-emitting phosphor Sr2SiO4: Pr3+ was synthesized through a solid-state reaction, and characterized by XRD, scanning electron microscopy (SEM), fluorescence spectrophotometer and thermo luminescence (TL) meter. Its emission spectra is composed of bluish purple (peaking at 390 nm), green (peaking at 535 nm) and red (peaking at 604 nm) light emission. They originate from the transitions of 4f → 5d, 3P0 → 3H5 and 1D2 → 3H4 of Pr3+. The afterglow emission spectrum is similar to the emission spectra. And the afterglow can last over 40 min in darkness. The TL curve shows that there is only one thermo luminescence band peak at about 376.480 K, which is responsible for the long-lasting emission.  相似文献   

17.
ZnWO4 powders with different morphologies were fabricated through a template-free hydrothermal method at 180 °C for 8 h in a wide pH range. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible and luminescence spectrophotometers were applied to study the effects of pH values on crystallinity, morphology, optical and luminescence properties. The XRD results showed that the WO3 + ZnWO4, ZnWO4, and ZnO phases could form after hydrothermal processing at 180 °C for 8 h with the pH values of 1, 3-11, and 13, respectively. The SEM and TEM observation revealed that the morphological transformation of ZnWO4 powders occurred with an increase in pH values as follows: star anise-, peony-, and desert rose-like microstructures and soya bean- and rod-like nanostructures. The highest luminescence intensity was found to be in sample consisting of star anise-like crystallites among all the samples due to the presence of larger particles with high crystallinity resulted from the favorable pH under the current hydrothermal conditions.  相似文献   

18.
NaGd(MoO4)2:Eu3+ (hereafter NGM:Eu) phosphors have been prepared by sol-gel method. The properties of the resulting phosphors are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence (PL) spectra and decay curve. The excitation spectra of NGM:Eu phosphors are mainly attributed to O → Mo charge-transfer (CT) band at about 282 nm and some sharp lines of Eu3+ f-f transitions in near-UV and visible regions with two strong peaks at 395 and 465 nm, respectively. Under the 395 and 465 nm excitation, intense red emission peaked at 616 nm corresponding to 5D0 → 7F2 transition of Eu3+ are observed for 35 at.% NGM:Eu phosphors as the optimal doping concentration. The luminescence properties suggest that NGM:Eu phosphor may be regarded as a potential red phosphor candidate for near-UV and blue light-emitting diodes (LEDs).  相似文献   

19.
Zirconium-titanium mixed oxide nanoparticles have been synthesized using microreactors made of bis-(2-ethylhexyl) sulfosuccinate (AOT)/water/n-hexane microemulsions. The control of particle size was achieved by varying the process variables, such as water-to-surfactant molar ratio and reagent concentration. Their sizes, appearances, crystal structures, pore diameter and surface area were characterized by TEM, XRD, N2 adsorption/desorption methods. The results revealed that samples prepared in reverse micelles had no crystalline phase. The Beckmann rearrangement of cyclohexanone oxime on ZrO2-TiO2 nanoparticles was carried out in a fixed-bed down flow reactor to investigate the effect of particle size on catalytic activity and selectivity. Samples synthesized in reverse micelles had better reaction performance than samples prepared via sol-gel method. A parallel relationship could be drawn between the catalytic activity and the particle size as well as the selectivity of the catalyst.  相似文献   

20.
M2Y8(SiO4)6O2: Tb3+ (M = Ca, Sr) phosphors have been synthesized with a new silicon source silane crosslinking reagent (N-2-aminoethylic-3-aminopropyldiethoxysilane [NH2(CH2)2NH(CH2)3SiCH3(OCH3)2], abbreviated as AEAPMMS) through the sol-gel process, both of which present the characteristic emission 5D4 → 7FJ (J = 6, 5, 4, 3) of Tb3+ ions. It is interesting to be found that the high energy level blue emission (5D3 → 7FJ (J = 6, 5, 4, 3) transition) still can be found in the emission spectrum of Ca2Y8(SiO4)6O2: Tb3+ while it disappears in the emission spectrum of Sr2Y8(SiO4)6O2: Tb3+ for the cross-relaxation-induced quenching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号