首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystal structures of BiMn0.97Al0.03O3 (I) at 300 and 470 K and BiMn0.9Al0.1O3 (II) at 90 and 300 K were studied with synchrotron X-ray powder diffraction. The strong Jahn-Teller distortion, observed at 300 K in I and associated with orbital order, disappeared at 470 K completely for one site and partially for the second site. The Mn/Al-O distances were very close to each other in I at 470 K and in II at 90 and 300 K indicating that orbital order did not appear in II even at 90 K. Magnetic properties of I and II were investigated with specific heat, high-temperature dc magnetic susceptibility, and ac magnetic susceptibility using different driving ac and applied dc magnetic fields and different ac magnetic field frequencies. The anomaly on the specific heat associated with a magnetic transition was strongly suppressed in II compared with that of I and BiMnO3.  相似文献   

2.
A series of inorganic phosphate crystals have been hydrothermally synthesized, which have high chemical stability and can keep their crystal structure after acid/base treatments. Its cation-exchange properties have been investigated and the results show that it is an excellent ion exchanger with high exchange capacities for H+, Li+ and Pb2+ ions (12.74, 6.98 and 3.92 mequiv./g, respectively). Selective extractions of Li+ and Pb2+ from the synthetic mixtures containing (Li+, Sr+, K+, Mg2+, Ca2+ and Ba2+) and (Pb2+, Ca2+, Ba2+, Co2+, Ni2+, Zn2+ and Mg2+) have been observed. The reasons of the high exchange selection of NATP for Li+ and Pb2+ ions have been discussed.  相似文献   

3.
In this study, bulk ceramics with general formula Bi1−ySryFe(1−y)(1−x)Sc(1−y)xTiyO3 (x = 0-0.2, y = 0.1-0.3 mol%) were prepared by traditional solid-state reaction method. As a comparison, bulk BiFeO3 (BF) was also sintered by rapid sintering method. Their structural, magnetic, dielectric properties were investigated. X-ray diffraction analysis indicated that apart from a small amount of secondary phase detected in BF, all other samples crystallized in pure perovskite structure and maintained original R3c space group. The room temperature M-H curves were obtained. While BF had a coercive magnetic field (Hc) of 150 Oe, Bi1−ySryFe1−yTiyO3 solid solutions had a much larger value (for y = 0.1, 0.2, 0.3, Hc were 4537, 5230 and 3578 Oe, respectively). Sc3+ substitution decreased the Hc values of these solid solutions remarkably, and resulted in soft magnetic properties, as well as a decrease of the dielectric loss. At 1 MHz, the tan δ of Bi0.7Sr0.3Fe0.7(1−x)Sc0.7xTi0.3O3 with x = 0.05, 0.1, 0.15, 0.2 were 0.1545, 0.1078, 0.1046 and 0.1701, respectively.  相似文献   

4.
Polycrystalline Cd3−xyCuxAyTeO6 (A = Li, Na) samples were prepared by solid-state reaction, and their crystal structure and electrical properties were investigated. In Cd3−xCuxTeO6 and Cd3−yAyTeO6 (A = Li, Na), the maxim solubility of x and y was 0.15 and 0.15 for A = Li, 0.05 for A = Na, respectively. For co-substituted samples Cd2.9−yCu0.1LiyTeO6 and Cd2.9−yCu0.1NayTeO6, the maxim solubility of x was the same as single substitution above-mentioned. The alkali-metal substituted samples Cd3−yAyTeO6 (A = Li, Na) showed a negative Seebeck coefficient, which indicates that the major conduction carriers are electron. On the other hand, the co-substituted samples Cd2.9−yCu0.1AyTeO6 (A = Li, Na) represented a positive Seebeck coefficient, and major conduction carriers were hole through substitution by copper ions.  相似文献   

5.
Cadmium substituted strontium hydroxy- and fluoro-apatites, Sr(10−x)Cdx(PO4)6Y2 (Y = OH and F), have been prepared as single phases in the 0 ≤ x ≤ 4 interval for the former and 0 ≤ x ≤ 6 for the latter compound, respectively. The refinements of the X-ray full powder patterns allowed the structure determination of nine samples, and showed a preference of cadmium atoms for the M(1) site in fluoroapatite samples. IR investigation gave information about the nature of the metal oxygen interactions. The obtained results are used for a comparative discussion about the factors which drive the mutual substitution of Ca, Sr, Cd and Pb in apatites. The important role of electronegativity and polarisability, as well as of ionic radii, is evidenced.  相似文献   

6.
Ba1−ySryLa4−xTbx(WO4)7 (x = 0.02-1.2, y = 0-0.4) phosphors were prepared via a solid-state reaction and their photoluminescence properties were investigated. An analysis of the decay behavior indicates that the energy migration between Tb3+ ions is conspicuous in the 5D3 → 7F4 transition due to the cross-relaxation in BaLa4(WO4)7. A partial substitution of Ba2+ by Sr2+ can not only enhance the emission intensity but also increase the solid solubility of Tb3+ in Ba1−ySryLa4−xTbx(WO4)7. The emission intensity of the 5D4 → 7FJ (J = 4, 5, 6) transitions can be enhanced by increasing Sr2+ and Tb3+ concentrations, with the optimal conditions being x = 1.2, y = 0.4 (Ba0.6Sr0.4La2.8Tb1.2(WO4)7). Under near-UV excitation at 379 nm, the CIE color coordinates of Ba1−ySryLa4−xTbx(WO4)7 vary from blue (0.212, 0.181) at x = 0.04, y = 0, to green (0.245, 0.607) at x = 1.2, y = 0.4.  相似文献   

7.
A new series of solid solutions of the type, AxBa1−xBi2Mo4O16 (A = Ca, Sr, Pb) have been isolated. The domain of the solid solutions is very narrow and is in the range (0.01 ≤ x ≤ 0.10). All the phases were synthesized by the solid-state technique. The crystal structure is similar to that of the monoclinic scheelite type BaBi2Mo4O16. The structure consists of layers of [Bi2O2] units separated by (Ba/AO)10 units and isolated MoO4 tetrahedra. Their semiconductor band gaps render them as potential materials for photocatalysis.  相似文献   

8.
LiMxMn2−xO4 (M = Ni2+, Co3+, and Ti4+; 0 ≤ x ≤ 0.2) spinels were prepared via a single-step ultrasonic spray pyrolysis method. Comparative studies on powder properties and high rate charge-discharge electrochemical performances (from 1 to 15 C) were performed. XRD identified that pure spinel phase was obtained and M was successfully substituted for Mn in spinel lattice. SEM and TEM studies confirmed that powders had a feature of ‘spherical nanostructural’, that is, powders consisted of spherical secondary particles with the size of about 1 μm, which were developed from close-packed primary particles with several tens of nanometers. Substitutions enhanced density of second particles to different extents, depending on M and its content. Charge-discharge tests showed that as-prepared LiMn2O4 could deliver excellent rate performance (around 100 mAh/g at 10 C). Ni substitution contributed to improving electrochemical performances. In the voltage range of 4.95-3.5 V, the materials showed much better electrochemical performances than LiMn2O4 in terms of capacity, cycleability and rate capability.  相似文献   

9.
The grain size and the density of the Zn1 − xSnxO (0 ≤ x ≤ 0.05) samples decreased with increasing SnO2 content. The addition of a small amount of SnO2 (x ≤ 0.01) to ZnO led to an increase in both the electrical conductivity and the absolute value of the Seebeck coefficient, resulting in a significant increase in the power factor. The thermoelectric power factor was maximized to a value of 1.25 × 10−3 Wm−1 K−2 at 1073 K for the Zn0.99Sn0.01O sample.  相似文献   

10.
Gel formation was realized by adding citric acid to a solution of La(NO3)3·5H2O, Ca(NO3)2·4H2O, and Fe(NO3)2·9H2O. Perovskite-type (La1−xCax)FeO3 (0 ≤ x ≤ 0.2) was synthesized by firing the gel at 500 °C in air for 1 h. The crystallite size (D1 2 1) decreased with increasing x, while the specific surface area was 6.8-9.4 m2/g and independent of x. The XPS measurement of the (La1−xCax)FeO3 surface indicated that the Ca2+ ion content increased with increasing x, while the Fe ion content was independent of x. Catalytic activity for CO oxidation increased with increasing x.  相似文献   

11.
The crystal structure and microwave dielectric properties of the (Sm1−xYx)(Ti1.5W0.5)O6 (x = 0 and 0.5) ceramics sintered at 1375 °C for 2-50 h were investigated in this study. No secondary phase was observed in the samples sintered for various sintering times, whereas a secondary phase was formed in the (Sm0.5Y0.5)(Ti1.5W0.5)O6 ceramic sintered at 1400 °C for 50 h. As for the microstructure analysis, the formation of the liquid phase was observed in the both of the samples sintered for 20 and 50 h. The formation of the liquid phase is related to the compositional change of Ti and W from the stoichiometric composition of the samples caused by the instability of crystal structure. The dielectric constants were increased with increased sintering time in the both of the samples, though variations in the temperature coefficient of resonant frequency of the samples were not recognized with the variation in the sintering time. Moreover, although the quality factors of the each sample increased with increasing the sintering time from 2 to 10 h, decreases in the quality factors were recognized when the sintering time was over 10 h.  相似文献   

12.
A newly substituted series of perovskites, BixLa2−xMnMO6 with M = Ni, Co and x = 0.25, 0.50, were synthesized using a citrate sol-gel technique. The crystal structure, established from neutron diffraction, is a distorted double perovskite with partial transition metal B-site ordering. These perovskites crystallize in the centrosymmetric space group, P21/n, with structures that are similar to the x = 0 end members. All samples are prone to non-stoichiometry involving substitution of Mn onto the Ni/Co sites, in addition to varying degrees of antisite disorder. The neutron powder diffraction and magnetization measurements reveal ferromagnetism in all samples with ordering temperatures between 220 K and 280 K. The M = Co samples have lower Curie temperatures, but higher coercivities. There is a clear link between the degree of transition metal site disorder and the saturation magnetization values. Electrical measurements demonstrate the presence of mixed ionic and electronic conductivity.  相似文献   

13.
Up to 10 at.% of copper readily substitutes for cerium in ceria. It is found that at oxygen partial pressures between 0.21 atm and 10−5 atm, CuxCe1−xO2−δ (0 ≤ x ≤ 0.10) solid solution behave as an oxide-ion electrolyte. Interestingly, Cu0.10Ce0.90O2−δ exhibits the oxide-ion conductivity of ca. 10−4 Ω−1 cm−1 at 600 °C at an oxygen partial pressure of 10−5 atm.  相似文献   

14.
The ferromagnetic metallic oxide, SrRuO3 (TC ∼ 165 K) undergoes structural, magnetic and metal-insulator transitions upon substitution of Cu at the Ru-site. For x = 0.2 in SrRu1−xCuxO3, the structure becomes a tetragonal with the space group I4/mcm and there is a signature of both ferromagnetic (TC = 65 K) and antiferromagnetic (TN = 32 K) ordering due to possible magnetic phase separation. The antiferromagnetism arises due to short range ordering of Cu- and Ru-moments. Jahn-Teller distortion of (Ru,Cu)-O6 octahedra indicates that the copper ions are in 2+ oxidation state with 6t2g3eg electronic configuration. For x ≥ 0.1, narrowing of Ru-4d bandwidth by the substitution of Cu ions results in semiconducting behavior. For x = 0.3, the ac and dc susceptibility measurements indicate a spin glass behavior. The origin of spin glass behavior has been attributed to competing ferromagnetic and antiferromagnetic interactions.  相似文献   

15.
Nanocrystalline La1−xCdxFeO3 (0.0 ≤ x ≤ 0.3) solid solutions have been synthesized by a single-step solution combustion method at a relatively low temperature of 400 °C. The combustion-synthesized solid solutions were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and magnetic measurements. The crystal structure examined by XRD indicates that the samples were single-phase, and crystallize in an orthorhombic (space group, Pbnm no. 62) structure. The parent and doped compounds showed canted antiferromagnetic behavior associated with an increase in magnetic moment with Cd doping. The changes in magnetic properties of the materials are correlated to the changes in structural features resulting from the Rietveld structural refinement of the materials.  相似文献   

16.
This paper presents the results of a study concerning the structural and electrical properties of MgAl2-2xZrxMxO4 (x = 0.00-0.20 and M = Co2+ and Ni2+) prepared by a coprecipitation technique using urea as a precipitating agent. The X-ray diffraction data for the pure and its doped samples are consistent with the single-phase spinel and their crystallite sizes are in the range 7-20 ± 4 nm. The DC resistivity increases from 3.09 × 109 Ω cm to 6.73 × 109 and 8.06 × 109 Ω cm whereas dielectric constant decreases from 5.80 to 5.11 and 4.95 on doping with Zr-Co and Zr-Ni, respectively. The electrical resistivity variations with increase in the dopant contents indicate two types of conduction mechanisms in operation. Several parameters such as, hopping energy (W), metal-semiconductor transition temperature (TMS) and Debye temperature (θD) have also been determined. The increase in DC resistivity and decrease in dielectric constant suggest that the synthesized materials can be considered for application as an insulating and structural material in fusion reactors.  相似文献   

17.
Single crystals of CsMxTe2−xO6 pyrochlores with M = Al, Ga, Ge, and In have been grown from a TeO2 flux. Structure refinements from single crystal X-ray diffraction data are reported. These results are used to discuss deviations from ideal stoichiometry that result in electronic conductivity presumably related to mixed valency of tellurium.  相似文献   

18.
Polycrystalline Sr2Fe1−xGaxMoO6 (0 ≤ x ≤ 0.6) materials have been synthesized by solid state reaction method and studied by neutron powder diffraction (NPD) and magnetization measurements. Rietveld analysis of the temperature dependent NPD data shows that the compounds crystallize in the tetragonal symmetry in the space group I4/m. The anti-site (AS) defects concentration increases with Ga doping, giving rise to highly B-site disordered materials. Ga doping at the Fe-site decreases the cell volume. The evolution of bond lengths and the cation oxidation states was determined from the Rietveld refinement data. The saturation magnetization and Curie temperature decreased with the increasing Ga content in the samples. Low temperature neutron diffraction data analysis and magnetization measurements confirm the magnetic interaction as ferrimagnetic in the sample.  相似文献   

19.
Crystalline Na3Bi2P3O12, K3Bi2P3O12 and glassy K3Bi2P3O12 compounds were prepared by solid-state reaction method. The prepared samples are characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry. The crystalline materials are found to be orthorhombic. The electrical conductivity measurements on the crystalline and glassy samples show that at ∼373 K, the σDC for crystalline K3Bi2P3O12 (0.81 × 10−8 S/cm) is about two orders of magnitude higher than the corresponding glassy phase (1.25 × 10−10 S/cm). The scaling results show that the conductivity relaxation mechanism is independent of temperature.  相似文献   

20.
The Er2+xTi2−xO7−δ (x = 0.096; 35.5 mol% Er2O3) solid solution and the stoichiometric pyrochlore-structured compound Er2Ti2O7 (x = 0; 33.3 mol% Er2O3) are characterized by X-ray diffraction (phase analysis and Rietveld method), thermal analysis and optical spectroscopy. Both oxides were synthesized by thermal sintering of co-precipitated powders. The synthesis study was performed in the temperature range 650-1690 °C. The amorphous phase exists below 700 °C. The crystallization of the ordered pyrochlore phase (P) in the range 800-1000 °C is accompanied by oxygen release. The ordered pyrochlore phase (P) exists in the range 1000−1200 °C. Heat-treatment at T ≥ 1600 °C leads to the formation of an oxide ion-conducting phase with a distorted pyrochlore structure (P2) and an ionic conductivity of about 10−3 S/cm at 740 °C. Complex impedance spectra are used to separately assess the bulk and grain-boundary conductivity of the samples. At 700 °C and oxygen pressures above 10−10 Pa, the Er2+xTi2−xO7−δ (x = 0, 0.096) samples are purely ionic conductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号