首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
顾大庆  麻衡 《山东冶金》2021,43(4):23-25,29
研究了变形温度及变形量对FH40高强度船板钢再结晶行为的影响规律.结果表明:试验钢变形量在20%~40%时,形变奥氏体处于部分再结晶区,温度的变化直接影响再结晶数量和晶粒尺寸.FH40高强船板钢发生完全再结晶所需的变形温度为1000℃、变形量为40%,此条件下变形下进行完全再结晶区轧制,获得细小、均匀的奥氏体晶粒.  相似文献   

2.
通过热模拟试验测定了F40高强度船板在1~35℃/s冷速下的相变过程,绘制出连续冷却转变(CCT)曲线,分析了不同冷却速度对相变规律和组织演变的影响.结果表明,F40 Ar3为760℃,冷速在5~15℃/s时组织主要为准多边形及针状铁素体,是F40比较理想的组织形态.  相似文献   

3.
王伟  苏志敏 《宽厚板》2009,15(5):1-2,26
利用Gleeble 2000型热模拟机对EH40高强度船板动态CCT曲线进行研究。结果表明,EH40钢在冷速大于5℃/s时,得到的主要是铁素体和贝氏体组织,且随着冷却速率的增大贝氏体体积份数增大;而在冷速小于5℃/s时,得到的主要是铁素体和珠光体组织。  相似文献   

4.
热连轧E36船板钢连续冷却相变行为   总被引:1,自引:0,他引:1  
通过热模拟试验机模拟了20 mm E36船板钢(%:0.15C、0.38Si、1.56Mn、0.011P、0.002S、0.04Nb、0.06V、0.02Ti、0.037Als)经1 080℃和830~890℃分别以变形速率1 s-1变形30%的双道次轧制及冷却过程,测得连续冷却转变曲线,并研究终轧温度和轧后冷却速度(5~25℃/s)对该钢相变和组织的影响。结果表明,随着冷却速度的增加,相变开始温度降低,珠光体的体积分数减小,贝氏体的体积分数增大;随着终轧温度的降低,相变开始温度升高;铁素体晶粒随冷却速度的增加和终轧温度的降低而细化。  相似文献   

5.
通过OM、SEM、TEM、EBSD等手段研究了F40级船板的组织特征以及组织结构对低温韧性的影响,并探讨了低温韧性的机理.结果表明:基体组织为针状铁素体+准多边形铁素体的复合组织,该复合组织具有较高的强度和优异的低温韧性;两种组织之间的界面以及针状铁素体条束之间的界面均为大角晶界,能够对裂纹的扩展起到有效的阻碍作用,增加裂纹扩展功,使得F40级船板具有良好的低温韧性,-80℃的冲击功都可以达到138J以上.  相似文献   

6.
王勇 《山东冶金》2012,(3):32-34
以两种微合金化方式(Nb、V、Ti和Nb、V、Ti、Mo)的X70管线钢为研究对象,在MMS-200热模拟试验机上进行了双道次轧制工艺模拟试验,研究不同卷取温度、冷却速度对X70显微组织的影响.结果表明,随着卷取温度的降低及冷速的提高,金相组织细化.卷取温度在520℃、冷速在15℃/s左右可以得到较为理想的针状铁素体组织.Nb、V、Ti微合金化管线钢,当冷却速度为15℃/s时,带状组织完全消失.  相似文献   

7.
摘要:为了深入了解铁素体基Ti-Mo高强钢在连续冷却相变过程中组织及硬度的变化及其原因,通过热膨胀法、金相及硬度等实验研究了Ti-Mo微合金钢在连续冷却条件下组织及性能的变化,探讨了冷却速率对组织、硬度及相变行为的影响机理,揭示了(Ti,Mo)C在奥氏体和铁素体中Ti/Mo原子比变化的原因。结果表明,随着冷却速率由0.06℃/s增加至17.9℃/s,组织依次为多边形铁素体+珠光体→多边形铁素体+粒状贝氏体→粒状贝氏体,硬度由144HV逐渐增大至228HV。当冷速由0.14℃/s增大至0.90℃/s时,组织中多边形铁素体比例不断增大,珠光体比例不断降低,硬度的提高主要来自于铁素体晶粒尺寸的细化及纳米级(Ti,Mo)C粒子的增多;当冷速由1.79℃/s增大至17.9℃/s时,组织中多边形铁素体比例不断降低,贝氏体比例不断提高,硬度的提高主要是由于贝氏体组织的细化及其比例的增加。(Ti,Mo)C粒子主要有2类:一类是奥氏体中析出的10~20nm的粒子,Ti原子数分数约为88%,另一类是铁素体中析出的小于10nm的粒子,Ti原子数分数约为68%,EDS测量结果与计算结果大致相当。  相似文献   

8.
刘小林 《江西冶金》2007,27(5):1-3,37
利用热模拟技术研究了超高强度船板钢形变后控冷过程中相变行为.结果表明:随着冷速的提高,实验钢相变点Fs,Ff,Bf逐渐降低,而Bs是先升后降,仅从5 ℃/s以后才随冷速提高而降低.在冷速小于5℃/s时,其室温组织为F P B,而大于5℃/s时,其室温组织为F B(或F B M).  相似文献   

9.
 建立了热轧低碳Si Mn系TRIP钢相变动力学模型。将该模型用于模拟热轧TRIP钢分段冷却过程中显微组织的演变,并定量分析了热变形和冷却速率对热变形奥氏体相变行为的影响。结果表明,预测值与实测值符合较好;降低终轧温度、提高终轧变形量,延长两相区缓冷时间都能促进铁素体相变,从而有利于提高残余奥氏体中的碳含量。  相似文献   

10.
通过对现场轧制工艺的模拟,借助热加工模拟试验机研究了变形量、变形温度及变形后的冷却速度,对一般强度船板钢变形奥氏体向铁素体和珠光体转变的影响。实验结果表明:增加变形量,降低变形温度,减缓冷却速度可在不同程度上促进奥氏体向铁素体和珠光体的转变。  相似文献   

11.
FH36耐低温高强度船板钢的试制   总被引:1,自引:0,他引:1  
介绍了莱钢试制FH36耐低温高强度船板钢的实践。通过设计合理的化学成分,采用LF+RH双精炼工艺冶炼,TMCP工艺轧制,成功开发出FH36高强度船板钢,各项性能指标满足标准要求,-60℃冲击功达到200J。  相似文献   

12.
介绍了安钢采用炉卷机组开发高强度船板EH40的主要工艺路线和技术应用情况。通过合理的成分、工艺设计及控制,研制出具有优异综合性能的高强船板EH40。  相似文献   

13.
通过热模拟试验研究了冷却速度(0.5~35℃/s)和变形量(0.3~0.6)对X100管线钢(%:0.06C、0.23Si、1.90Mn、0.005P、0.000 3S、0.28Mo、0.25 Ni、0.23Cr、0.05Nb、0.02Ti、0.20Cu、0.025Al)组织的影响,得出该钢的静态和动态连续冷却转变(CCT)曲线。结果表明,试验钢未变形奥氏体在5℃/s冷却速度可得到全部贝氏体组织;变形奥氏体相变开始温度升高,随热变形量增加,针状铁素体转变区扩大,板条贝氏体转变区缩小。  相似文献   

14.
在高强度船板成分设计上以D级船板为基础,采用微合金元素仅添加Al而不添加其他合金元素的减量化策略,通过严格控制控轧控冷工艺参数,使钢板晶粒细化,性能达到了国标要求。本文分析得出:细晶强化是将低级别钢种升级到更高强度级别的减量化轧制的重要措施;钢的纯净度和组织晶粒是影响低温冲击韧性的关键因素;较低终轧温度和一定的冷却强度是保证较厚板强度的主要措施。  相似文献   

15.
E级船用结构钢板的开发   总被引:1,自引:0,他引:1  
按照E级船用结构钢板的技术要求及市场需求,通过合理的化学成分设计,结合控轧控冷工艺及正火热处理工艺成功开发了以正火状态交货的E级船板,其产品性能完全符合GB712-2000标准要求及各国船级社船规要求,得到了九国船级社的工厂认可。  相似文献   

16.
高冰  段双霞 《山西冶金》2010,33(6):7-8,65
介绍了临钢中板厂生产开发DH36高强度船板钢的成分设计思路、生产工艺控制要点及实物质量水平。采用低碳、Nb-V微合金成分设计,发挥临钢四辊生产线的设备优势,通过控轧控冷工艺生产的高强度船板钢DH36综合力学性能达到了多国船级社规范的特殊要求。  相似文献   

17.
济南钢铁股份有限公司根据E32高强度船体结构用钢的技术要求和市场需求,通过合理的化学成分设计,采用合理的正火工艺,成功开发了这一产品,通过了中国、英国、美国、日本、挪威、法国、德国、韩国、意大利等九国船级社工厂认可。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号