首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Although cell differentiation usually involves synthesis of new proteins, little is known about the role of protein degradation. In eukaryotes, conjugation to ubiquitin polymers often targets a protein for destruction. This process is regulated by deubiquitinating enzymes, which can disassemble ubiquitin polymers or ubiquitin-substrate conjugates. We find that a deubiquitinating enzyme, UbpA, is required for Dictyostelium development. ubpA cells have normal protein profiles on gels, grow normally, and show normal responses to starvation such as differentiation and secretion of conditioned medium factor. However, ubpA cells have defective aggregation, chemotaxis, cAMP relay, and cell adhesion. These defects result from low expression of cAMP pulse-induced genes such as those encoding the cAR1 cAMP receptor, phosphodiesterase, and the gp80 adhesion protein. Treatment of ubpA cells with pulses of exogenous cAMP allows them to aggregate and express these genes like wild-type cells, but they still fail to develop fruiting bodies. Unlike wild type, ubpA cells accumulate ubiquitin-containing species that comigrate with ubiquitin polymers, suggesting a defect in polyubiquitin metabolism. UbpA has sequence similarity with yeast Ubp14, which disassembles free ubiquitin chains. Yeast ubp14 cells have a defect in proteolysis, due to excess ubiquitin chains competing for substrate binding to proteasomes. Cross-species complementation and enzyme specificity assays indicate that UbpA and Ubp14 are functional homologs. We suggest that specific developmental transitions in Dictyostelium require the degradation of specific proteins and that this process in turn requires the disassembly of polyubiquitin chains by UbpA.  相似文献   

2.
The molecular and functional characterization of a 125-kDa Ca2+-extractable protein of the Triton X-100-insoluble fraction of Dictyostelium cells identified a new type of a gelsolin-related molecule. In addition to its five gelsolin segments, this gelsolin-related protein of 125 kDa (GRP125) reveals a number of unique domains, two of which are predicted to form coiled-coil regions. Another distinct attribute of GRP125 concerns the lack of sequence elements known to be essential for characteristic activities of gelsolin-like proteins, i.e. the severing, capping, or nucleation of actin filaments. The subcellular distribution of GRP125 to vesicular compartments suggests an activity of GRP125 different from actin-binding, gelsolin-related proteins. GRP125 expression is tightly regulated and peaks at the transition to the multicellular pseudoplasmodial stage of Dictyostelium development. GRP125 was found indispensable for slug phototaxis, because slugs fail to correctly readjust their orientation in the absence of GRP125. Analysis of the GRP125-deficient mutant showed that GRP125 is required for coupling photodetection to the locomotory machinery of slugs. We propose that GRP125 is essential in the natural environment for the propagation of Dictyostelium spores. We also present evidence for further representatives of the GRP125 type in Dictyostelium, as well as in heterologous cells from lower to higher eukaryotes.  相似文献   

3.
PC cell line is a highly tumorigenic insulin-independent variant from the teratoma-derived adipogenic cell line 1246. Culture medium of PC cells contains a growth promoting activity for 3T3 cells and producer cells. PC cell-derived growth factor (PCDGF) was purified to homogeneity from PC cell-conditioned medium as an apparent 88-kDa protein by chromatography on heparin-Sepharose, Sephacryl S-200, and phenyl-Sepharose. Digestion with peptide-N-glycosidase F yielded an apparent 68-kDa protein component indicating that PCDGF is a glycoprotein containing about 20 kDa of carbohydrate. Partial sequence from Edman degradation of peptide fragments obtained by digestion of PCDGF with cyanogen bromide and trypsin demonstrates that PCDGF contains regions of sequence identity to that deduced from the granulin or epithelin precursor cDNAs. Granulins are small polypeptides purified from granulocyte extracts with no apparent biological functions. Epithelins are cell growth modulators purified as small molecular mass 6-kDa polypeptides from kidney extracts. The existence of a large molecular mass precursor for granulin or epithelin has been predicted based upon recently cloned cDNAs encoding these biomolecules within a 63.5-kDa protein with putative glycosylation sites. No biological activity has previously been attributed to the precursor. The present results indicate that PCDGF is a potential precursor for epithelin and/or granulin, that this 88-kDa protein is secreted and glycosylated, and that it can function as a mitogen for 3T3 cells as well as an autocrine growth factor for PC cells.  相似文献   

4.
5.
We have isolated an insertional mutant of Dictyostelium discoideum that aggregated rapidly and formed spores and stalk cells within 14 h of development instead of the normal 24 h. We have shown by parasexual genetics that the insertion is in the rdeA locus and have cloned the gene. It encodes a predicted 28 kDa protein (RdeA) that is enriched in charged residues and is very hydrophilic. Constructs with the DNA for the c-Myc epitope or for the green fluorescent protein indicate that RdeA is not compartmentalized. RdeA displays homology around a histidine residue at amino acid 65 with members of the H2 module family of phosphotransferases that participate in multistep phosphoryl relays. Replacement of this histidine rendered the protein inactive. The mutant is complemented by transformation with the Ypd1 gene of Saccharomyces cerevisiae, itself an H2 module protein. We propose that RdeA is part of a multistep phosphorelay system that modulates the rate of development.  相似文献   

6.
In Dictyostelium, initial cell type choice is correlated with the cell-cycle phase of the cell at the time of starvation. We have isolated a mutant, ratioA (rtoA), with a defect in this mechanism that results in an abnormally high percentage of prestalk cells. The rtoA gene has been cloned and sequenced and codes for a novel protein. The cell cycle is normal in rtoA. In the wild type, prestalk cells differentiate from those cells in S or early G2 phase at starvation and prespore cells from cells in late G2 or M phase at starvation. In rtoA mutants, both prestalk and prespore cells originate randomly from cells in any phase of the cell cycle at starvation.  相似文献   

7.
Antiserum raised against whole Helicobacter pylori cells identified a novel 94-kDa antigen. The nucleotide sequence of the gene encoding the 94-kDa antigen was determined, and analysis of the deduced amino acid sequence revealed structural features typical of the ClpB ATPase family of stress response proteins. An isogenic H. pylori clpB mutant showed increased sensitivity to high-temperature stress, indicating that the clpB gene product functions as a stress response protein in H. pylori.  相似文献   

8.
The cluA gene of Dictyostelium discoideum encodes a novel 150-kDa protein. Disruption of cluA results in clustering of mitochondria near the cell center. This is a striking difference from normal cells, whose mitochondria are dispersed uniformly throughout the cytoplasm. The mutant cell populations also exhibit an increased frequency of multinucleated cells, suggesting an impairment in cytokinesis. Both phenotypes are reversed by transformation of cluA- cells with a plasmid carrying a constitutively expressed cluA gene. The predicted sequence of the cluA gene product is homologous to sequences encoded by open reading frames in the genomes of Saccharomyces cerevisiae and Caenorhabditis elegans, but not to any known protein. The only exception is a short region with some homology to the 42-residue imperfect repeats present in the kinesin light chain, which probably function in protein-protein interaction. These studies identify a new class of proteins that appear to be required for the proper distribution of mitochondria.  相似文献   

9.
10.
The analysis of host immunity to mycobacteria and the development of discriminatory diagnostic reagents relies on the characterization of conserved and species-specific mycobacterial antigens. In this report, we have characterized the Mycobacterium avium homolog of the highly immunogenic M. leprae 35-kDa protein. The genes encoding these two proteins were well conserved, having 82% DNA identity and 90% identity at the amino acid level. Moreover both proteins, purified from the fast-growing host M. smegmatis, formed multimeric complexes of around 1000 kDa in size and were antigenically related as assessed through their recognition by antibodies and T cells from M. leprae-infected individuals. The 35-kDa protein exhibited significant sequence identity with proteins from Streptomyces griseus and the cyanobacterium Synechoccocus sp. strain PCC 7942 that are up-regulated under conditions of nutrient deprivation. The 67% amino acid identity between the M. avium 35-kDa protein and SrpI of Synechoccocus was spread across the sequences of both proteins, while the homologous regions of the 35-kDa protein and the P3 sporulation protein of S. griseus were interrupted in the P3 protein by a divergent central region. Assessment by PCR demonstrated that the gene encoding the M. avium 35-kDa protein was present in all 30 M. avium clinical isolates tested but absent from M. intracellulare, M. tuberculosis, or M. bovis BCG. Mice infected with M. avium, but not M. bovis BCG, developed specific immunoglobulin G antibodies to the 35-kDa protein, consistent with the observation that tuberculosis patients do not recognize the antigen. Strong delayed-type hypersensitivity was elicited by the protein in guinea pigs sensitized with M. avium.  相似文献   

11.
12.
13.
Major stages of Dictyostelium development are regulated by secreted, extracellular cAMP through activation of a serpentine receptor family. During early development, oscillations of extracellular cAMP mobilize cells for aggregation; later, continuous exposure to higher extracellular cAMP concentrations downregulates early gene expression and promotes cytodifferentiation and cell-specific gene expression. The cAMP receptor 1 gene CAR1 has two promoters that are differentially responsive to these extracellular cAMP stimuli. The early CAR1 promoter is induced by nM pulses of cAMP, which in turn are generated by CAR1-dependent activation of adenylyl cyclase (AC). Higher, non-fluctuating concentrations of cAMP will adapt this AC stimulus-response, repress the activated early promoter and induce the dormant late promoter. We now identify a critical element of the pulse-induced CAR1 promoter and a nuclear factor with sequence-specific interaction. Mutation of four nucleotides within the element prevents both in vitro protein binding and in vivo expression of an otherwise fully active early CAR1 promoter and multimerization of the wild-type, but not mutant, sequence will confer cAMP regulation to a quiescent heterologous promoter. These cis and trans elements, thus, constitute a part of the molecular response to the cAMP transmembrane signal cascade that regulates early development of Dictyostelium.  相似文献   

14.
The transport of vesicular organelles along microtubules has been well documented in a variety of systems, but the molecular mechanisms underlying this process are not well understood. We have developed a method for preparing extracts from Dictyostelium discoideum which supports high levels of bidirectional, microtubule-based vesicle transport in vitro. This organelle transport assay was also adapted to observe specifically the motility of vesicles in the endocytic pathway. Vesicle transport can be reconstituted by recombining a high-speed supernatant with KI-washed organelles, which do not move in the absence of supernatant. Furthermore, a microtubule affinity-purified motor fraction supports robust bidirectional movement of the salt-washed organelles. The plus and minus end-directed transport activities can be separated by exploiting differences in their affinities for microtubules in the presence of 0.3 M KCl. We also used our assay to examine organelle transport in a strain of Dictyostelium overexpressing a 380-kDa C-terminal fragment of the cytoplasmic dynein heavy chain, which displays an altered microtubule pattern (380-kDa cells; [Koonce and Samso, Mol. Biol. Cell 7:935-948, 1996]). We have found that the frequency and velocity of minus end-directed membrane organelle movements were significantly reduced in 380-kDa cells relative to wild-type cells, while the frequency and velocity of plus end-directed movements were equivalent in the two cell types. The 380-kDa C-terminal fragment cosedimented with membrane organelles, although its affinity was significantly lower than that of native dynein. An impaired membrane-microtubule interaction may be responsible for the altered microtubule patterns in the 380-kDa cells.  相似文献   

15.
The transition to multicellularity is a key feature of the Dictyostelium life cycle, and two genes, gbf and lagC, are known to play pivotal roles in regulating this developmental switch. lagC-null and gbf-null cells fail to induce cell-type-specific genes ordinarily expressed during multicellular development. The null mutants also share a similar morphological phenotype: mutant cells repeatedly aggregate to form a loose mound, disperse, and reform a mound, rather than proceeding to form a tip. To characterize defects in morphogenesis in these mutants, we examined cell motion in the mutant mounds. In analogy with the failed transition in gene expression, we found that lagC-null and gbf-null mounds failed to make a morphogenetic transition from random to rotational motion normally observed in the parent strain. One reason for this was the inability of the mutant mounds to establish a single, dominant signaling-wave center. This defect of lagC-null or gbf-null cells could be overcome by the addition of adenosine, which alters cAMP signaling, but then even in the presence of apparently normal signaling waves, cell motility was still aberrant. This motility defect, as well as the signaling-wave defect, could be overcome in lagC-null cells by overexpression of GBF, suggesting that lagC is dispensable if GBF protein levels are high enough. This set of morphogenetic defects that we have observed helps define key steps in mound morphogenesis. These include the establishment of a dominant signaling-wave center and the capacity of cells to move directionally within the cell mass in response to guidance cues.  相似文献   

16.
The major surface glycoprotein (MSG) of Pneumocystis carinii f. sp. carinii is a family of proteins encoded by a family of heterogeneous genes. Messenger RNAs encoding different MSGs each begin with the same 365-bp sequence, called the Upstream Conserved Sequence (UCS), which is in frame with the contiguous MSG sequence. The UCS contains several potential start sites for translation. To determine if translation of MSG mRNAs begins in the UCS, polyclonal antiserum was raised against the 123-amino-acid peptide encoded by the UCS. The anti-UCS serum reacted with a P. carinii protein that migrated at 170 kDa; however, it did not react with the mature MSG protein, which migrates at 116 kDa. A 170-kDa protein was immunoprecipitated with anti-UCS serum and shown to react with a monoclonal antibody against a conserved MSG epitope. To explore the functional role of the UCS in the trafficking of MSG, the nucleotide sequence encoding the UCS peptide was ligated to the 5' end of an MSG gene and incorporated into a recombinant baculovirus. Insect cells infected with the UCS-MSG hybrid gene expressed a 160-kDa protein which was N-glycosylated. By contrast, insect cells infected with a baculovirus carrying an MSG gene lacking the UCS expressed a nonglycosylated 130-kDa protein. These data suggest that in P. carinii, translation begins in the UCS to produce a pre-MSG protein, which is subsequently directed to the endoplasmic reticulum and processed to the mature form by proteolytic cleavage.  相似文献   

17.
Alterations in the genomic position of the tobacco mosaic virus (TMV) genes encoding the 30-kDa cell-to-cell movement protein or the coat protein greatly affected their expression. Higher production of 30-kDa protein was correlated with increased proximity of the gene to the viral 3' terminus. A mutant placing the 30-kDa open reading frame 207 nucleotides nearer the 3' terminus produced at least 4 times the wild-type TMV 30-kDa protein level, while a mutant placing the 30-kDa open reading frame 470 nucleotides closer to the 3' terminus produced at least 8 times the wild-type TMV 30-kDa protein level. Increases in 30-kDa protein production were not correlated with the subgenomic mRNA promoter (SGP) controlling the 30-kDa gene, since mutants with either the native 30-kDa SGP or the coat protein SGP in front of the 30-kDa gene produced similar levels of 30-kDa protein. Lack of coat protein did not affect 30-kDa protein expression, since a mutant with the coat protein start codon removed did not produce increased amounts of 30-kDa protein. Effects of gene positioning on coat protein expression were examined by using a mutant containing two different tandemly positioned tobamovirus (TMV and Odontoglossum ringspot virus) coat protein genes. Only coat protein expressed from the gene positioned nearest the 3' viral terminus was detected. Analysis of 30-kDa and coat protein subgenomic mRNAs revealed no proportional increase in the levels of mRNA relative to the observed levels of 30-kDa and coat proteins. This suggests that a translational mechanism is primarily responsible for the observed effect of genomic position on expression of 30-kDa movement and coat protein genes.  相似文献   

18.
The ability of the adenovirus type 5 E1B 55-kDa mutants dl1520 and dl338 to replicate efficiently and independently of the cell cycle, to synthesis viral DNA, and to lyse infected cells did not correlate with the status of p53 in seven cell lines examined. Rather, cell cycle-independent replication and virus-induced cell killing correlated with permissivity to viral replication. This correlation extended to S-phase HeLa cells, which were more susceptible to virus-induced cell killing by the E1B 55-kDa mutant virus than HeLa cells infected during G1. Wild-type p53 had only a modest effect on E1B mutant virus yields in H1299 cells expressing a temperature-sensitive p53 allele. The defect in E1B 55-kDa mutant virus replication resulting from reduced temperature was as much as 10-fold greater than the defect due to p53 function. At 39 degreesC, the E1B 55-kDa mutant viruses produced wild-type yields of virus and replicated independently of the cell cycle. In addition, the E1B 55-kDa mutant viruses directed the synthesis of late viral proteins to levels equivalent to the wild-type virus level at 39 degreesC. We have previously shown that the defect in mutant virus replication can also be overcome by infecting HeLa cells during S phase. Taken together, these results indicate that the capacity of the E1B 55-kDa mutant virus to replicate independently of the cell cycle does not correlate with the status of p53 but is determined by yet unidentified mechanisms. The cold-sensitive nature of the defect of the E1B 55-kDa mutant virus in both late gene expression and cell cycle-independent replication leads us to speculate that these functions of the E1B 55-kDa protein may be linked.  相似文献   

19.
20.
Genetic structure and chromosomal mapping of MyD88   总被引:1,自引:0,他引:1  
The myeloid differentiation (MyD) marker MyD88 was initially characterized as a primary response gene, upregulated in mouse M1 myeloleukemic cells in response to differentiation induced by interleukin-6. Subsequent analysis revealed that MyD88 possesses a unique modular structure, which consists of an N-terminal "death domain," similar to the intracellular segments of TNF receptor 1 and Fas, and a C-terminal region related to the cytoplasmic domains of the Drosophila morphogen Toll and vertebrate interleukin-1 receptors. In this report we describe the cloning and gene structure of mouse MyD88. The complete coding sequence of mouse MyD88 spans five exons, with the first exon encoding the complete death domain. Zooblot analysis revealed that MyD88 is an evolutionarily conserved gene. MyD88 was localized to the distal region of mouse chromosome 9 by interspecific backcross mapping. The human homolog (hMyD88) was mapped to chromosome 3p22-p21.3 by PCR analysis of a human chromosome 3 somatic cell hybrid mapping panel. Northern blot analysis revealed widespread expression of MyD88 in many adult mouse tissues, and RT-PCR studies detected MyD88 mRNA in T and B cell lines and differentiating embryonic stem cells. The broad expression pattern demonstrates that mouse MyD88 expression is not restricted to cells of myeloid lineage as was originally believed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号