首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress–relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress–relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10?3 s?1. The creep properties of the steel at different temperatures were predicted from the stress–relaxation test. The Norton’s stress exponent (n) was found to decrease with the increasing temperature. Using Bird–Mukherjee–Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent (n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity (m) with the test temperature was found from strain-rate change test. The low plastic stability with m ~ 0.06 was observed at 600 °C. The activation volume (V*) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.  相似文献   

2.
Features of equilibrium crystallization of alloys in a ternary system consisting of solid and liquid solutions of components A, B, and C with melting points related as t C < t A < t B are investigated in detail. It is demonstrated that, in alloys of any composition, the distribution coefficients of components B and C are k B > 1 and k C < 1, respectively. For the component A, this characteristic, depending on the alloy composition, can be either larger or smaller than unity, and at temperature t A , k A = 1.  相似文献   

3.
The elastic properties of Ni x W1?x alloys up to x = 0.1875 have been determined from first principles calculations. We have used stress–strain relationships to calculate the C ij elastic coefficients and the Voigt–Reuss–Hill approximations to determine the bulk and shear moduli of polycrystals. The W alloying increases the compression modulus while the shear modulus remains almost constant. Furthermore, the W alloying has a minor effect on the elastic anisotropy and, therefore, on its contribution to the indentation modulus.  相似文献   

4.
In many Ni-based superalloys, dynamic strain aging (DSA) generates an inhomogeneous plastic deformation resulting in jerky flow known as the Portevin–Le Chatelier (PLC) effect. This phenomenon has a deleterious effect on the mechanical properties and, at high temperature, is related to the diffusion of substitutional solute atoms toward the core of dislocations. However, the question about the nature of the atomic species responsible for the PLC effect at high temperature still remains open. The goal of the present work is to answer this important question; to this purpose, three different 718-type and a 625 superalloy were studied through a nonconventional approach by mechanical spectroscopy. The internal friction (IF) spectra of all the studied alloys show a relaxation peak P718 (at 885 K for 0.1 Hz) in the same temperature range, 700 K to 950 K, as the observed PLC effect. The activation parameters of this relaxation peak have been measured, Ea(P718)?=?2.68?±?0.05 eV, τ0?=?2·10?15 ± 1 s as well as its broadening factor β?=?1.1. Experiments on different alloys and the dependence of the relaxation strength on the amount of Mo attribute this relaxation to the stress-induced reorientation of Mo-Mo dipoles due to the short distance diffusion of one Mo atom by exchange with a vacancy. Then, it is concluded that Mo is the atomic species responsible for the high-temperature PLC effect in 718 superalloy.  相似文献   

5.
Time-dependent plastic deformation through stress relaxation and creep deformation during in-situ cooling of the as-cast single-crystal superalloy CMSX-4® has been studied via neutron diffraction, transmission electron microscopy, electro-thermal miniature testing, and analytical modeling across two temperature regimes. Between 1000 °C and 900 °C, stress relaxation prevails and gives rise to softening as evidenced by a decreased dislocation density and the presence of long segment stacking faults in γ phase. Lattice strains decrease in both the γ matrix and γ′ precipitate phases. A constitutive viscoplastic law derived from in-situ isothermal relaxation test under-estimates the equivalent plastic strain in the prediction of the stress and strain evolution during cooling in this case. It is thereby shown that the history dependence of the microstructure needs to be taken into account while deriving a constitutive law and which becomes even more relevant at high temperatures approaching the solvus. Higher temperature cooling experiments have also been carried out between 1300 °C and 1150 °C to measure the evolution of stress and plastic strain close to the γ′ solvus temperature. In-situ cooling of samples using ETMT shows that creep dominates during high-temperature deformation between 1300 °C and 1220 °C, but below a threshold temperature, typically 1220 °C work hardening begins to prevail from increasing γ′ fraction and resulting in a rapid increase in stress. The history dependence of prior accumulated deformation is also confirmed in the flow stress measurements using a single sample while cooling. The saturation stresses in the flow stress experiments show very good agreement with the stresses measured in the cooling experiments when viscoplastic deformation is dominant. This study demonstrates that experimentation during high-temperature deformation as well as the history dependence of the microstructure during cooling plays a key role in deriving an accurate viscoplastic constitutive law for the thermo-mechanical process during cooling from solidification.  相似文献   

6.
The influence of the chemical composition, especially the niobium content, chromium equivalent Creq, and nickel equivalent Nieq, on the weld solidification cracking susceptibility in the austenite single-phase region in the Schaeffler diagram was investigated. Specimens were fabricated using the hot-wire laser welding process with widely different compositions of Creq, Nieq, and niobium in the region. The distributions of the susceptibility, such as the crack length and brittle temperature range (BTR), in the Schaeffler diagram revealed a region with high susceptibility to solidification cracking. Addition of niobium enhanced the susceptibility and changed the distribution of the susceptibility in the diagram. The BTR distribution was in good agreement with the distribution of the temperature range of solidification (ΔT) calculated by solidification simulation based on Scheil model. ΔT increased with increasing content of alloying elements such as niobium. The distribution of ΔT was dependent on the type of alloying element owing to the change of the partitioning behavior. Thus, the solidification cracking susceptibility in the austenite single-phase region depends on whether the alloy contains elements. The distribution of the susceptibility in the region is controlled by the change in ΔT and the segregation behavior of niobium with the chemical composition.  相似文献   

7.
Energy dispersive synchrotron X-ray diffraction was applied to investigate in situ the evolution of lattice strains and stresses in austenite and martensite during quenching and tempering of a soft martensitic stainless steel. In one experiment, lattice strains in austenite and martensite were measured in situ in the direction perpendicular to the sample surface during an austenitization, quenching, and tempering cycle. In a second experiment, the sin2 ψ method was applied in situ during the austenite-to-martensite transformation to distinguish between macro- and phase-specific micro-stresses and to follow the evolution of these stresses during transformation. Martensite formation evokes compressive stress in austenite that is balanced by tensile stress in martensite. Tempering to 748 K (475 °C) leads to partial relaxation of these stresses. Additionally, data reveal that (elastic) lattice strain in austenite is not hydrostatic but hkl dependent, which is ascribed to plastic deformation of this phase during martensite formation and is considered responsible for anomalous behavior of the 200 γ reflection.  相似文献   

8.
The current study has investigated the influence of zirconium (Zr) addition to Mg–3Ca–xZr (x = 0.3, 0.6, 0.9 wt%) alloys prepared using argon arc melting on the microstructure and impression properties at 448–498 K under constant stress of 380 MPa. Microstructural analysis of as-cast Mg–3Ca–xZr alloys showed grain refinement with Zr addition. The observed grain refinement was attributed to the growth restriction effect of Zr in hypoperitectic Mg–3Ca–0.3 wt% Zr alloys. Heterogeneous nucleation of α-Mg in properitectic Zr during solidification resulted in grain refinement of hyperperitectic Mg–3Ca–0.6 wt% Zr and Mg–3Ca–0.9 wt% Zr alloys. The hardness of Mg–3Ca–xZr alloys increased as the amount of Zr increased due to grain refinement and solid solution strengthening of α-Mg by Zr. Creep resistance of Mg–3Ca–xZr alloys increased with the addition of Zr due to solid solution strengthening of α-Mg by Zr. The calculated activation energy (Qa) for Mg–3Ca samples (131.49 kJ/mol) was the highest among all alloy compositions. The Qa values for 0.3, 0.6 and 0.9 wt% Zr containing Mg–3Ca alloys were 107.22, 118.18 and 115.24 kJ/mol, respectively.  相似文献   

9.
A necessary microstructural condition for the manifestation of the effect of superplasticity in alloys is a small grain size (d < 10 μm). The ingots of commercial magnesium alloys have a very coarse cast structure with d > 100 μm. We have studied the regimes of heat treatment of such materials in AZ91, AE42, QE22, and ZRE1 alloys with a purpose of obtaining a fine-grained structure. The optimum temperature of overaging of quenched magnesium alloys lies between 300 and 350°C. After hot pressing of heat-treated alloys, the average grain size is 6.4 (AZ91), 6.2 (AE42), 1.2 (ZRE1), and 0.7 (QE22) μm. The best characteristics of superplasticity are manifested by the ZRE1 and QE22 alloys with a relative elongation of 750% and strain-rate sensitivity m = 0.75 at T = 420°C and strain rate \(\dot \varepsilon \) = 3 × 10?4 s?1. Under these conditions, the AZ91 and AE42 alloys have δ ≤ 260% and m = 0.45.  相似文献   

10.
The effects of microstructural factors on the quasi-static tensile and dynamic torsional deformation behaviors in Ti-6Al-4V alloys with Widmanstätten structures were investigated in this study. Dynamic torsional tests were conducted using a torsional Kolsky bar for five Widmanstätten structures, in which microstructural parameters such as colony size and α lamellar spacing were varied by heat treatments, and then the test data were analyzed in relation to microstructures, tensile properties, and fracture mode. Under dynamic torsional loading, maximum shear stress was largely dependent on colony size, whereas shear strain at the maximum shear stress point was on colony size as well as α lamellar spacing. Adiabatic shear bands were found in the deformed area of the fractured torsional specimens, and their width was smallest in the structure whose colony size and α lamellar spacing were both large. The possibility of the adiabatic shear band formation was quantitatively analyzed in relation to microstructural factors. It was the highest in the coarse Widmanstätten structure, which was confirmed by the theoretical critical shear strain (υ c ) condition for the adiabatic shear band formation.  相似文献   

11.
In this work, the effect of aging period on the characteristic transformation temperatures, thermodynamic parameters and structural variations of CuAlNiMn shape memory alloys were investigated. Aging was performed at above the austenite finish temperature of the un-aged specimen (120°C) for six different retention times, namely 1h, 2h, 3h, 4h, 5h and 6h. The changes in the transformation temperatures were examined by differential scanning calorimetry at different heating/cooling rates. The aging period was found to have an effect on the characteristic austenite and martensite transformation temperatures and thermodynamic parameters such as the enthalpy and entropy of alloys. High-temperature order-disorder phase transitions were determined using a differential thermal analysis, which showed that all the un-aged and aged specimens had an A2 → B2, B2 → L21 and an L21 → 9R, 18R transition. The structural analysis of the un-aged and aged specimens was performed through X-ray diffraction measurements at room temperature. The intensities of the diffraction peaks varied according to the aging time.  相似文献   

12.
In the present study, tensile properties, strain hardening and fracture behavior of dual-phase (DP) steels were correlated with martensite volume fraction (V M ). A series of DP steels with different amounts of V M (28–50 %) were produced by cold rolling and subsequent intercritical annealing of a ferrite-pearlite starting structure. Hardness and tensile tests results of DP steels showed that variation of hardness, uniform elongation and total elongation with V M was linear and obeyed the rule of mixtures, whereas yield strength and ultimate tensile strength exhibited a nonlinear variation with V M . Analysis of strain hardening behavior of DP steels by the Hollomon analysis showed two stages of strain hardening corresponding to ferrite deformation and co-deformation of ferrite and martensite, respectively. The strain hardening exponent of first stage (n I ) increased with increasing V M , while the strain hardening exponent of second stage (n II ) as well as transition strain between the deformation stages decreased.  相似文献   

13.
Analysis of solid-solution hardening (SSH) in alloys requires the synthesis of large composition libraries and the measurement of strength or hardness from these compositions. Conventional methods of synthesis and testing, however, are not efficient and high-throughput approaches have been developed in the past. In the present study, we use a high-throughput combinatorial approach to examine SSH at large concentrations in binary alloys of Fe-Ni, Fe-Co, Pt-Ni, Pt-Co, Ni-Co, Ni-Mo, and Co-Mo. The diffusion couple (DC) method is used to generate concentration (c) gradients and the nanoindentation (NI) technique to measure the hardness (H) along these gradients. The obtained H –c profiles are analyzed within the framework of the Labusch model of SSH, and the \( c^{2/3} \) dependence of H predicted by the model is found to be generally applicable. The SSH behavior obtained using the combinatorial method is found to be largely consistent with that observed in the literature using conventional and DC-NI methods. This study evaluates SSH in Fe-, Ni-, Co-, and Pt-based binary alloys and confirms the applicability of the DC-NI approach for rapidly screening various solute elements for their SSH ability.  相似文献   

14.
The effect of microstructural refinement and the β phase fraction, V β, on the mechanical properties at cryogenic temperatures (up to 20 K) of two commercially important aerospace titanium alloys: Ti-6Al-4V (normal as well as extra low interstitial grades) and VT14 was examined. Multi-pass caliber rolling in the temperature range of 973 K to 1223 K (700 °C to 950 °C) was employed to refine the microstructure, as V β was found to increase nonlinearly with the rolling temperature. Detailed microstructural characterization of the alloys after caliber rolling was carried out using optical microscopy (OM), scanning electron microscopy (SEM), electron back-scatter diffraction (EBSD), and transmission electron microscopy (TEM). Complete spheroidization of the primary α laths along with formation of bimodal microstructure occurred when the alloys are rolled at temperatures above 1123 K (850 °C). For rolling temperatures less than 1123 K (850 °C), complete fragmentation of the β phase with limited spheroidization of α laths was observed. The microstructural refinement due to caliber rolling was found to significantly enhance the strength with no penalty on ductility both at room and cryogenic temperatures. This was attributed to a complex interplay between microstructural refinement and reduced transformed β phase fraction. TEM suggests that the serrated stress–strain responses observed in the post-yield deformation regime of specimens tested at 20 K were due to the activation of \( \left\{ {10\bar{1}2} \right\} \) tensile twins.  相似文献   

15.
The mechanical and strain-hardening behaviors of the new AF955 nickel-based superalloy were investigated through two different heat treatments. The first consisted of a solubilization with a subsequent precipitation heat treatment at 746 °C for 4 hours, while the second included an additional precipitation treatment at 621 °C for 8 hours, which further increased the AF955 yield stress by about 15 pct and the ultimate stress by about 9 pct. However, through analyzing the true stress and true strain flow curves, the Considére’s stresses of AF955 after the heat treatments were similar and the strain-hardening behaviors at high stresses were surprisingly comparable. The AF955 microstructures were observed after the two different heat treatments through transmission electron microscopy. The dimensions and volume fractions of the strengthening γ″ and γ′ particles were quantified through the imaging analysis technique, finding that there were only γ″ particles in AF955 with heat treatment at 746 °C, while with the additional heat treatment at 621 °C, there was a higher total volume fraction of the γ″?+?γ′ phases. The microstructure quantification allowed modeling of the different yield behaviors of the alloy after the heat treatments through the Orowan model for nondeformable particles and the weak coupled dislocation (WCD) and strong coupled dislocation models for deformable particles. The WCD model for deformable particles described the yield behaviors of AF955 very well after both heat treatments. Moreover, the deformability of the γ″ and γ′ particles also explained the comparable strain-hardening behaviors at high stresses of AF955 after the two different heat treatments. Although mechanical properties are correctly assumed to be key parameters for classifying materials, the analysis of true stress and true strain flow curves always should be performed to properly rationalize the mechanical behaviors of metallic alloys.  相似文献   

16.
Based on the power-law stress–strain relation and equivalent energy principle, theoretical equations for converting between Brinell hardness (HB), Rockwell hardness (HR), and Vickers hardness (HV) were established. Combining the pre-existing relation between the tensile strength (σ b ) and Hollomon parameters (K, N), theoretical conversions between hardness (HB/HR/HV) and tensile strength (σ b ) were obtained as well. In addition, to confirm the pre-existing σ b -(K, N) relation, a large number of uniaxial tensile tests were conducted in various ductile materials. Finally, to verify the theoretical conversions, plenty of statistical data listed in ASTM and ISO standards were adopted to test the robustness of the converting equations with various hardness and tensile strength. The results show that both hardness conversions and hardness-strength conversions calculated from the theoretical equations accord well with the standard data.  相似文献   

17.
Interruption of loading during reorientation and isothermal pseudoelasticity in shape memory alloys with a strain arrest (i.e., holding strain constant) results in a time-dependent evolution in stress or with a stress arrest (i.e., holding stress constant) results in a time-dependent evolution in strain. This phenomenon, which we term as pseudo-creep, is similar to what was reported in the literature three decades ago for some traditional metallic materials undergoing plastic deformation. In a previous communication, we reported strain arrest of isothermal pseudoelastic loading, isothermal pseudoelastic unloading, and reorientation in NiTi wires as well as a rate-independent phase diagram. In this paper, we provide experimental results of the pseudo-creep phenomenon during stress arrest of isothermal pseudoelasticity and reorientation in NiTi wires as well as strain arrest of isothermal pseudoelasticity and reorientation in NiTi sheets. Stress arrest in NiTi wires accompanied by strain accumulation or recovery is studied using the technique of multi-video extensometry. The experimental results were used to estimate the amount of mechanical energy needed to evolve the wire from one microstructural state to another during isothermal pseudoelastic deformation and the difference in energies between the initial and the final rest state between which the aforementioned evolution has occurred.  相似文献   

18.
A metastable β Ti-10V-3Al-3Fe (wt pct) alloy containing different α phase fractions after thermo-mechanical processing was compressed to 0.4 strain. Detailed microstructure evaluation was carried out using high-resolution scanning transmission electron microscopy and electron back-scattering diffraction. Stress-induced βα′′ and βω transformation products together with {332}〈113〉β and {112}〈111〉β twinning systems were simultaneously detected. The effects of β phase stability and strain rate on the preferential activation of these reactions were analyzed. With an increase in β phase stability, stress-induced phase transformations were restricted and {112}〈111〉β twinning was dominant. Alternatively, less stable β conditions or higher strain rates resulted in the dominance of the {332}〈113〉β twinning system and formation of secondary α′′ martensite.  相似文献   

19.
A method is proposed for predicting the critical stress-intensity coefficient K 1c of structural steels (their crack resistance) on the basis of uniaxial tensile tests of standard samples. The derivation of this method relies on the concepts of mechanical stability and embrittlement when nonuniform force fields act on a metal. The strain-hardening index n of the metal at the critical transition temperatures from the plastic state to the quasi-brittle state (T c or T 0) and from the quasi-brittle state to the brittle state (T k2) plays a key role here. The proposed method may prove effective in monitoring the crack resistance of steels certified in scientific and plant laboratories.  相似文献   

20.
Dendritic spacing can affect microsegregation profiles and also the formation of secondary phases within interdendritic regions, which influences the mechanical properties of cast structures. To understand dendritic spacings, it is important to understand the effects of growth rate and composition on primary dendrite arm spacing (λ 1) and secondary dendrite arm spacing (λ 2). In this study, aluminum alloys with concentrations of (1, 3, and 5 wt pct) Zn were directionally solidified upwards using a Bridgman-type directional solidification apparatus under a constant temperature gradient (10.3 K/mm), resulting in a wide range of growth rates (8.3–165.0 μm/s). Microstructural parameters, λ 1 and λ 2 were measured and expressed as functions of growth rate and composition using a linear regression analysis method. The values of λ 1 and λ 2 decreased with increasing growth rates. However, the values of λ 1 increased with increasing concentration of Zn in the Al-Zn alloy, but the values of λ 2 decreased systematically with an increased Zn concentration. In addition, a transition from a cellular to a dendritic structure was observed at a relatively low growth rate (16.5 μm/s) in this study of binary alloys. The experimental results were compared with predictive theoretical models as well as experimental works for dendritic spacing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号