首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了分析叶顶间隙泄漏涡的影响范围、运行轨迹和强度的变化规律,以某汽轮机高压级为研究对象,采用SSTκ-ω湍流模型,应用PISO算法对叶项间隙内的非定常流动进行了数值模拟.结果表明:叶顶间隙泄漏流是有规律的周期性的非定常流动,泄漏涡的影响范围、运行轨迹和强度随时间和叶顶间隙的变化而变化;泄漏流对主流的影响呈现出从弱到强、再从强到弱的周期性变化规律;叶顶间隙泄漏涡在丁/4时刻的强度和影响范围均达到最大,在T/2时刻,静叶脱落涡和动叶吸力面前部的泄漏涡混合形成新的涡系,而动叶吸力面后部的泄漏涡却与其边界层的脱涡混合,离开吸力面.  相似文献   

2.
An experimental study is conducted to investigate the flow dynamics within the near‐wake region of a horizontal axis wind turbine using particle image velocimetry (PIV). Measurements were performed in the horizontal plane in a row of four radially distributed measurement windows (tiles), which are then patched together to obtain larger measurement field. The mean and turbulent components of the flow field were measured at various blade phase angles. The mean velocity and turbulence characteristics show high dependency on the blade phase angle in the near‐wake region closer to the blade tip and become phase independent further downstream at a distance of about one rotor diameter. In the near‐wake region, both the mean and turbulent characteristics show a systemic variation with the phase angle in the blade tip region, where the highest levels of turbulence are observed. The streamlines of the instantaneous velocity field at a given phase allowed to track a tip vortex which showed wandering trend. The tip vortices are mostly formed at r/R > 1, which indicates the wake expansion. Results also show the gradual movement of the vortex region in the axial direction, which can be attributed to the dynamics of the helical tip vortices which after being generated from the tip, rotate with respect to the blade and move in the axial direction because of the axial momentum of the flow. The axial velocity deficit was compared with other laboratory and field measurements. The comparison shows qualitative similarity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
为了研究叶顶区域非定常流动特性,对跨声速轴流压气机转子NASA Rotor37在多工况下进行了三维非定常数值模拟,采用谱本征正交分解(Spectral Proper Orthogonal Decomposition,SPOD)方法从叶顶区域流场中提取出时空耦合的单频相干结构进行分析。研究结果表明:相比于常规分析方法,SPOD方法能够高效地从非定常流场中识别出流动特征,有助于揭示叶顶区域流动规律;在“小流量”工况下叶顶区域流动呈现出强的非定常性,且随着质量流率的减小叶顶区域非定常流动增强、波动范围增加、波动频率呈现出“阶跃式”下降;造成叶顶区域流场非定常周期性波动的主要原因是叶顶间隙泄漏涡破碎区的扰动以及叶顶间隙泄漏涡破碎后与主流相互作用所形成的叶尖二次涡的波动。  相似文献   

4.
Flow fields with tip leakage vortex in a small axial cooling fan   总被引:1,自引:1,他引:0  
In order to improve the fan characteristics, especially efficiency and noise level of a small axial cooling fan with a large tip clearance, the internal flow measurements with tip leakage vortex were carried out at fan rotor outlet us- ing an I-type hot-wire probe. The probe was set toward two directions, parallel and normal to the meridional plane of test fan, and the two directional velocity components were measured. From the result of fan test it was found that the test fan didn't have the unstable characteristic with a positive gradient on its pressure - flow-rate curve. From the results of velocity measurement it was observed that the tip leakage vortex exited at maximum efficiency flow-rate and large flow-rate conditions. However, at small flow-rate conditions the tip leakage vortex was not observed and it was found that the flow field were enlarged toward radial outwards  相似文献   

5.
An experimental study is conducted to investigate the influences of blade tip winglet on the flow field of a compressor cascade. The tests are performed in a low speed linear cascade with stationary endwall, with three blade tip configurations, including the baseline tip, the suction-side winglet tip and the pressure-side winglet tip. The flowfield downstream of the cascade is measured using five-hole probe, from which the three-dimensional velocity field, vorticity field and pressure field are obtained. Static pressure measurements are made on the endwall above the blade row using pressure taps embedded in the plywood endwall. All measurements are made at both design and off-design conditions for tip clearance level of about 2 percent of the blade chord. The results revealed the incidence variation significantly affects the secondary flow and the associated loss field downstream of the cascade, where the tip leakage vortex and passage vortex exist as the major contributors on the field. The winglet geometry arrangements can change the trajectory of the tip leakage vortex. The suction-side winglet tip blade provides a lower overall total pressure loss coefficient when compared to the baseline tip blade and pressure-side winglet tip blade at all incidence angles.  相似文献   

6.
In these years, a lot of environmental problems such as air pollution and exhaustion of fossil fuels have been discussed intensively. In our laboratory, a hydrogen-fueled propulsion system has been researched as an alternative to conventional systems. A hydrogen-fueled propulsion system is expected to have higher power, lighter weight and lower emissions. However, for the practical use, there exist many problems that must be overcome. Considering these backgrounds, jet engines with hydrogen-fueled combustion within a turbine blade passage have been studied. Although some studies have been made on injecting and burning hydrogen fuel from a stator surface, little is known about the interaction between a tip leakage vortex near the suction side of a rotor tip and hydrogen-fueled combustion. The purpose of this study is to clarify the influence of the tip leakage vortex on the characteristics of the 3-dimensional flow field with hydrogen-fueled combustion within a turbine blade passage. Reynolds-averaged compressible Navier-Stokes equations are solved with incorporating a k-ε turbulence and a reduced chemical mechanism models. Using the computational results, the 3-dimensional turbulent flow field with chemical reactions is numerically visualized, and the three-dimensional turbulent flow fields with hydrogen combustion and the structure of the tip leakage vortex are investigated.  相似文献   

7.
Influences of tip clearance on the tip flow and associated loss mechanism in a contra-rotating axial flow fan has been studied in the paper, based on three dimensional numerical results. The results with different tip clearance are compared in terms of stage efficiency, relative total pressure loss coefficient, flow angle. It is found that the efficiency of the contra-rotating fan changes almost linearly with increment of the tip clearance, however, efficiency of the rear rotor is observed to decrease more dramatically than that of the forward rotor given same tip clearance variation. The analysis on the flow structure indicates that the tip region flow field is qualitatively similar in both rotors. However, with the same clearance value, the leakage flow in the rear rotor is effected by a tip leakage vortex of greater intensity caused by relative loading levels and the inter rotor interaction.  相似文献   

8.
The present study aims to understand the energy conversion mechanism of a 100 kW horizontal axis tidal stream turbine by analyzing thrust, torque, and wake flow measurements. The scale ratio of the turbine model was 1/20 and model tests for power and wake measurements were conducted in a towing tank facility. Wake fields were measured by a towed underwater stereoscopic particle image velocimetry (SPIV) system. The chord-length based Reynolds number at 40% of the radius of the turbine ranged from 53,000 to 63,000 in the test conditions. The turbine model showed the highest power coefficient at a tip speed ratio (TSR) of 3.5, and the magnitude of power coefficient was 0.278. Three TSR conditions were selected for SPIV measurement after power measurement tests, representing heavy loading, highest efficiency, and light loading, respectively. In the wake field measurement results, conversion of kinetic energy of the turbine wake was investigated, decomposing it into effectively extracted work, loss due to the drag on the turbine system, kinetic energy of the time-mean axial flow, local flow structures, turbulence, and secondary flow loss. In high TSR conditions with a small angle of attack onto the turbine blade, the secondary flow loss was minimized.  相似文献   

9.
The near casing flow fields inside the rotor passage of a 1.5 stage axial compressor with different blade-loading levels and tip gap sizes were measured by using stereoscopic particle image velocimetry (SPIV). Based on a carefully defined blockage extracting method, the variations of blockage parameter inside the blade passage were analyzed. It was found that the variation of blockage parameter appeared as a non-monotonic behavior inside the blade passage in most cases. This non-monotonic behavior became much more remarkable as the blade loading increases or mass flow rate decreases.The variations of the blockage parameter inside the blade passage had close relation to the evolutionary procedures of the tip leakage vortex (TLV). The destabilization of the TLV caused a rapid increasing of the blockage parameter. After the TLV lost the features of a concentrated streamwise vortex, the blockage parameter usually got a peak value. And then, because of the intense turbulent mixing between the TLV low momentum flow and its surrounding flows, the flow deficit inside the TLV recovered.  相似文献   

10.
The blade tip leakage flow with efficiency losses and cavitation phenomena is a concern for the low-head tidal power units. A simplified case of NACA0009 hydrofoil in a water tunnel is used to investigate the effects of tip clearance geometries including the foil tip shape and gap width on the flow features and foil performance. Steady non-cavitating simulations are implemented for a round tip foil and a sharp tip foil with two incidence angles (α = 10° and 5°) and different normalized gap width (τ). The minimum pressure is used to reflect the normalized vortex intensity (Γ*) and cavitation characteristics. The Γ*-τ curves at different streamwise positions show that the sharp tip foil generates relatively weaker tip leakage vortex with more flat curves, but its higher Γ* of tip separation vortex in wider gaps increases the risk of clearance cavitation. The flow features on a cross section inside the gap suggest that the sharp tip reduces the leakage flow losses and increases the velocity gradient due to the boundary layer separation. The lift coefficient is a little higher for the sharp tip foil than the round tip foil, with small differences for α = 5° but noticeable deviations for α = 10° especially within 0.3<τ < 1.  相似文献   

11.
This paper presents a numerical investigation of effects of axial non-uniform tip clearances on the aerodynamic performance of a transonic axial compressor rotor (NASA Rotor 37). The three-dimensional steady flow field within the rotor passage was simulated with the datum tip clearance of 0.356 mm at the design wheel speed of 17188.7 rpm. The simulation results are well consistent with the measurement results, which verified the numeri- cal method. Then the three-dimensional steady flow field within the rotor passage was simulated respectively with different axial non-uniform tip clearances. The calculation results showed that optimal axial non-uniform tip clearances could improve the compressor performance, while the efficiency and the pressure ratio of the com- pressor were increased. The flow mechanism is that the axial non-uniform tip clearance can weaken the tip leak- age vortex, blow down low-energy fluids in boundary layers and reduce both flow blockage and tip loss.  相似文献   

12.
<正>It is well known that tip leakage flow has a strong effect on the compressor performance and stability. This paper reports on a numerical investigation of detailed flow structures in an isolated transonic compressor rotor-NASA Rotor 37 at near stall and stalled conditions aimed at improving understanding of changes in 3D tip leakage flow structures with rotating stall inception.Steady and unsteady 3D Navier-Stokes analyses were conducted to investigate flow structures in the same rotor.For steady analysis,the predicted results agree well with the experimental data for the estimation of compressor rotor global performance.For unsteady flow analysis, the unsteady flow nature caused by the breakdown of the tip leakage vortex in blade tip region in the transonic compressor rotor at near stall condition has been captured with a single blade passage.On the other hand, the time-accurate unsteady computations of multi-blade passage at near stall condition indicate that the unsteady breakdown of the tip leakage vortex triggered the short length-scale-spike type rotating stall inception at blade tip region.It was the forward spillage of the tip leakage flow at blade leading edge resulting in the spike stall inception. As the mass flow ratio is decreased,the rotating stall cell was further developed in the blade passage.  相似文献   

13.
This study examines how the complex flow structure within a gas turbine rotor affects aerodynamic loss. An unshrouded linear turbine cascade was built, and velocity and pressure fields were measured using a 5-hole probe. In order to elucidate the effect of tip clearance, the overall aerodynamic loss was evaluated by varying the tip clearance and examining the total pressure field for each case. The tip clearance was varied from 0% to 4.2% of blade span and the chord length based Reynolds number was fixed at 2×105. For the case without tip clearance, a wake downstream of the blade trailing edge is observed, along with hub and tip passage vortices. These flow structures result in profile loss at the center of the blade span, and passage vortex related losses towards the hub and tip. As the tip clearance increases, a tip leakage vortex is formed, and it becomes stronger and eventually alters the tip passage vortex. Because of the interference of the secondary tip leakage flow with the main flow, the streamwise velocity decreases while the total pressure loss increases significantly by tenfold in the last 30% blade span region towards the tip for the 4.2% tip clearance case. It was additionally observed that the overall aerodynamic loss increases linearly with tip clearance.  相似文献   

14.
为了有效抑制叶顶泄漏流的发展,降低叶顶泄漏损失,针对两级动叶可调轴流风机提出在吸力面构造叶顶小翼并开设斜槽的新型叶顶改型方案。采用Fluent数值模拟了5种叶顶改型方案对风机性能和流场特征的影响,分析了不同方案下流场、叶顶静压、叶顶泄漏量和动叶区做功能力的变化。结果表明:吸力面小翼可有效降低叶顶损失,小翼上开设顺流向斜槽可进一步提高风机性能,逆流向斜槽会使性能略有降低;顺流向单斜槽为最佳改型方案,在设计流量下全压和效率分别提升166 Pa和0.942%;叶顶间隙处产生额外的涡流,叶顶泄漏流得到抑制,动叶区做功能力得以提升。  相似文献   

15.
偏航状态下风力机叶片与流场之间相互作用会导致风力机近尾迹流场的湍流特征变化,采用双向流固耦合对不同偏航工况下水平轴风力机近尾迹流场进行数值模拟研究,获得不同偏航角下尾迹湍流特征演化规律。结果表明:随着偏航角的增大,正偏航侧会出现“速度亏损圆环”,且此圆环的范围呈扩大趋势;偏航角的增大对叶根处速度亏损影响最大,对叶尖处速度亏损影响最小,与正偏航侧相比,负偏航侧的速度亏损值减为约1/2;随着偏航角的增大,正负偏航侧的湍流强度变化呈不对称性,正偏航侧对湍流耗散的影响程度较负偏航侧大;涡流黏度越来越小,且在偏航10°涡流黏度相对于偏航5°减小约1/2,沿着轴向叶尖涡的管状环涡结构变得不稳定,出现明显耗散,且在偏航15°之后涡结构的耗散破裂程度越来越剧烈,进而对风力机气动噪声产生较大影响。  相似文献   

16.
The steady and unsteady leakage flow and heat transfer characteristics of the rotor blade squealer tip were conducted by solving Reynolds-Averaged Navier-Stokes(RANS) equations with k-ω turbulence model.The first stage of GE-E3 engine with squealer tip in the rotor was adopted to perform this work.The tip clearance was set to be 1% of the rotor blade height and the groove depth was specified as 2% of the span.The results showed that there were two vortexes in the tip gap which determined the local heat transfer characteristics.In the steady flow field,the high heat transfer coefficient existed at several positions.In the unsteady case,the flow field in the squealer tip was mainly influenced by the upstream wake and the interaction of the blades potential fields.These unsteady effects induced the periodic variation of the leakage flow and the vortexes,which resulted in the fluctuation of the heat transfer coefficient.The largest fluctuation of the heat transfer coefficient on the surface of the groove bottom exceeded 16% of the averaged value on the surface of the squealer tip.  相似文献   

17.
为了研究来流边界层对跨声速压气机转子气动性能及流场的影响,针对Rotor37进行了不同来流边界层进口条件下的跨声速压气机流场数值模拟。结果表明:来流边界层引起其内部的激波结构变化,进而影响60%叶高以上流场,造成该展向范围内的流量分布发生再分配;在来流边界层具有相同的厚度时,总压亏损越大,以60%~90%叶高激波损失为主体的附加损失越高;来流边界层弱化了叶尖泄漏涡系的强度,通过同时改变叶尖负荷和叶尖泄漏流来源流体能量影响泄漏强度,进而影响泄漏涡系的形成和发展。  相似文献   

18.
This paper describes the numerical investigations of flow and heat transfer in an unshrouded turbine rotor blade of a heavy duty gas turbine with four tip configurations. By comparing the calculated contours of heat transfer coefficients on the flat tip of the HP turbine rotor blade in the GE-E3 aircraft engine with the corresponding experimental data, the κ-ω turbulence model was chosen for the present numerical simulations. The inlet and outlet boundary conditions for the turbine rotor blade are specified as the real gas turbine, which were obtained from the 3D full stage simulations. The rotor blade and the hub endwall are rotary and the casing is stationary. The influences of tip configurations on the tip leakage flow and blade tip heat transfer were discussed. It’s showed that the different tip configurations changed the leakage flow patterns and the pressure distributions on the suction surface near the blade tip. Compared with the flat tip, the total pressure loss caused by the leakage flow was decreased for the full squealer tip and pressure side squealer tip, while increased for the suction side squealer tip. The suction side squealer tip results in the lowest averaged heat transfer coefficient on the blade tip compared to the other tip configurations.  相似文献   

19.
Wake flows downstream of hydrokinetic turbines are characterized by hub and tip vortices, a velocity deficit and an increase in turbulence intensity. Velocity and turbulence recovery in the wakes of individual turbines constrains the density of turbines in an array and limits the amount of energy that can be produced by a turbine farm. However, few hydrokinetic turbine flow recovery studies have been conducted, especially on the far-field flow characteristics. Nor have studies evaluated the accuracy of acoustic Doppler profiler measurements in the wakes of turbines. The present study examines vertical profiles of mean velocity and turbulence, as well as longitudinal profiles of velocity deficit and turbulence levels measured at the symmetry plane of a model three-blade axial flow turbine in a large open channel flow. Mean velocity and turbulence statistics are measured using an acoustic Doppler velocimeter (ADV) and a pulse coherent acoustic Doppler profiler (ADP). ADV and corrected-ADP derived values of mean velocity, turbulence intensity and root-mean-square velocity constitute a well-documented data set that can be used to validate numerical models simulating the effects of hydrokinetic turbine arrays. We found that 80% of the flow recovery occurred about ten diameters downstream from the rotor plane, which suggests that practical values for longitudinal spacing of turbines should be between ten and fifteen diameters. Significant errors observed in mean velocity and turbulence statistics derived from ADP measurements in the near wake region raise concerns on the use of these instruments for such measurements in lab and field studies. Although the cause of some of the errors requires further investigation, we show that errors in turbulence intensity can be successfully corrected with supplemental ADV measurements.  相似文献   

20.
端壁相对运动对压气机叶栅间隙流场影响的数值模拟   总被引:3,自引:0,他引:3  
压气机端壁与叶片间的相对运动是影响叶顶间隙气流流动的重要因素.采用数值模拟的方法考察了端壁运动对不同叶顶间隙压气机叶栅内三维流场的影响.结果表明:端壁相对运动改变了叶栅间隙流场结构,叶栅通道内出现向相邻叶片压力面运动的刮削泄漏涡,上通道涡及叶顶分离涡受到抑制,叶尖负荷增大,间隙泄漏流量增加,叶栅总损失由于叶顶区掺混损失减少而减少.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号