首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solid-state phase equilibria of the V-Si-Gd ternary system at 973 K (700 °C) were experimentally evaluated. The existence of nine binary compounds, namely, V3Si, V5Si3, V6Si5, VSi2, Gd5Si3, Gd5Si4, GdSi, GdSi1.67, and GdSi2?x , was confirmed, and no ternary compound was found at 973 K (700 °C). The homogeneity ranges of V3Si and GdSi2?x were investigated. It is worth mentioning that the Gd3Si4 compound was discovered through changing the experimental conditions, and its crystal structure was discussed.  相似文献   

2.
3.
This study investigates the sensitization behavior of AISI 304LN deformed previously by cold rolling (CR) to 5 pct to 25 pct reduction in thickness and aged at 673 K to 873 K (400 °C to 600 °C). The emphasis was on revealing the degree of sensitization (DOS) resulting from low-temperature sensitization (LTS) on the orthogonal surfaces and correlation thereof with the changes in various metallurgical properties caused by cold rolling. It was found that the DOS differs among the orthogonal surfaces such as the rolling surface (RS), transverse surface (TS), and cross transverse surface (CTS). RS showed lower DOS compared with CTS and TS. The differences in the DOS were attributed to the combined effect of deformation-induced martensite (DIM), grain size, and slip band formation. A deformation of 5 pct was critical to the susceptibility of AISI 304LN to intergranular (IGC) and transgranular corrosion (TGC). The sensitization kinetics was slow or saturated leading to desensitization beyond 5pct deformations at 773 K (500 °C) and 873 K (600 °C). It was, however, uniformly accelerated over 5 to 25 pct deformation when aged at 673 K (400 °C).  相似文献   

4.
5.
The isothermal section of the Mn-Sn-Zn system at 500 °C was determined with 20 alloys. The alloys were prepared by melting the pure elements in evacuated quartz capsules. The alloy samples were examined by means of X-ray diffraction (XRD) and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. A new ternary phase Mn4Zn8Sn (λ) was found to have a bcc structure with a lattice parameter a = 0.92508 (5) nm. Its composition range spans 25 to 35 at. pct Mn, 4 to 8 at. pct Sn, and 55 to 70 at. pct Zn. The Zn is substituted for Mn in Mn3Sn, Mn2Sn, and Mn3Sn2. The solubility of Zn in Mn3Sn, Mn2Sn, and Mn3Sn2 was measured to be about 17, 12, and 4 at. pct, respectively. The phase boundaries of the liquid and β-Mn phases were well established. The following 3 three-phase equilibria were well determined: (1) β-Mn + ε-MnZn3 + Mn3Sn, (2) λ + Mn3Sn + Mn2Sn, and (3) L + λ + Mn2Sn. The additional 5 three-phase equilibria, which are ε-MnZn3 + λ + Mn3Sn, ε 1-MnZn3 + ε-MnZn3 + λ, ε 1-MnZn3 + λ + L, Mn2Sn + L + MnSn2, and Mn3Sn2 + MnSn2 + Mn2Sn, were deduced and shown with dashed lines in the present isothermal section.  相似文献   

6.
CaO-SiO2-Al2O3-CaF2 is a base system of mold flux for high Al steels. Phase equilibrium in CaO-SiO2-Al2O3-15 mass pct CaF2 system at 1523 K (1250 °C) was investigated using quenching method followed by X-ray diffraction and Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. Isothermal section in this system at 1523 K (1250 °C) with Al2O3 being less than 25 mass pct and CaO/SiO2 (mass pct) being between 0.43 and 1.25 was experimentally constructed. The liquidus composition and seven solid-liquid coexistence regions at 1523 K (1250 °C) were determined.  相似文献   

7.
8.
9.
Decomposition and dissolution of limestone in slag at 1873 K (1600 °C) were studied. The limestone samples were in the shape of cubes (11 mm × 11 mm × 11 mm approximately). The decomposition was carried out both in argon and in slag under argon atmosphere. In order to gain an insight into the phenomenon of slow decomposition, the decomposition process of CaCO3 was simulated using Comsol. The results showed evidently that the decomposition of calcium carbonate was controlled mostly by heat transfer. It was also found that the decomposition product CaO had very dense structure, whether the sample was decomposed in slag or in argon. The slow decomposition and the dense CaO layer would greatly hinder the dissolution of lime in the slag. The present results clearly indicate that the addition of limestone instead of lime would not be beneficial in the converter process.  相似文献   

10.
Since automotive heat exchangers are operated at varying temperatures and under varying pressures, both static and dynamic mechanical properties should be known at different temperatures. Tubes are the most critical part of the most heat exchangers made from aluminum brazing sheet. We present tensile test, stress amplitude-fatigue life, and creep–rupture data of six AA3XXX series tube alloys after simulated brazing for temperatures ranging from 293 K to 573 K (20 °C to 300 °C). While correlations between several mechanical properties are strong, ranking of alloys according to one property cannot be safely deduced from the known ranking according to another property. The relative reduction in creep strength with increasing temperature is very similar for all six alloys, but the general trends are also strong with respect to tensile and fatigue properties; an exception is one alloy that exhibits strong Mg-Si precipitation activity during fatigue testing at elevated temperatures. Interrupted fatigue tests indicated that the crack growth time is negligible compared to the crack initiation time. Fatigue lifetimes are reduced by creep processes for temperatures above approximately 423 K (150 °C). When mechanical properties were measured at several temperatures, interpolation to other temperatures within the same temperature range was possible in most cases, using simple and well-established equations.  相似文献   

11.
The phase relationships of the Cu-Ti-Er ternary phase diagram at 773?K (500?°C) were investigated mainly by means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), and differential thermal analysis (DTA). It is confirmed in this work that the binary compounds Cu9Er2 and Cu7Er2 exist in the Cu-Er binary system at 773?K (500?°C). The stability of the CuTi3 phase is confirmed in the Cu-Ti system. After heat treatment at 1023?K (750?°C) for 90 hours, the phase CuTi3 is observed in the microstructure of the alloy 25Cu75Ti. The temperature of the eutectoid transformation, namely, ??-Ti ? ??-Ti?+?CuTi3, is determined to be 1078?K (805?°C) in this work. The 773?K (500?°C) isothermal section consists of 14 single-phase regions, 25 two-phase regions, and 12 three-phase regions. None of the phases in this system reveals a remarkable homogeneity range at 773?K (500?°C).  相似文献   

12.
13.
U-Mo dispersion and monolithic fuels are being developed to fulfill the requirements for research reactors, under the Reduced Enrichment for Research and Test Reactors program. In dispersion fuels, particles of U-Mo alloys are embedded in the Al-alloy matrix, while in monolithic fuels, U-Mo monoliths are roll bonded to the Al-alloy matrix. In this study, interdiffusion and microstructural development in the solid-to-solid diffusion couples, namely, U-15.7 at. pct Mo (7 wt pct Mo) vs pure Al, U-21.6 at. pct Mo (10 wt pct Mo) vs pure Al, and U-25.3 at. pct Mo (12 wt pct Mo) vs pure Al, annealed at 873 K (600 °C) for 24 hours, were examined in detail. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron probe microanalysis (EPMA) were employed to examine the development of a very fine multiphase interaction layer with an approximately constant average composition of 80 at. pct Al. Extensive TEM was carried out to identify the constituent phases across the interaction layer based on selected area electron diffraction and convergent beam electron diffraction (CBED). The cubic-UAl3, orthorhombic-UAl4, hexagonal-U6Mo4Al43, and cubic-UMo2Al20 phases were identified within the interaction layer that included two- and three-phase layers. Residual stress from large differences in molar volume, evidenced by vertical cracks within the interaction layer, high Al mobility, Mo supersaturation, and partitioning toward equilibrium in the interdiffusion zone were employed to describe the complex microstructure and phase constituents observed. A mechanism by compositional modification of the Al alloy is explored to mitigate the development of the U6Mo4Al43 phase, which exhibits poor irradiation behavior that includes void formation and swelling.  相似文献   

14.
The deformation behavior of a Ti-3Al-2.5V (wt pct) near-α alloy was investigated during in situ deformation inside a scanning electron microscopy (SEM). Two plates with distinct textures were examined. Tensile experiments were performed at 296 K and 728 K (455 °C) (~0.4T m), while a tensile-creep experiment was performed at 728 K (455 °C) and 180 MPa (σ/σ ys = 0.72). The active deformation systems were identified in the α phase using electron backscattered diffraction based slip-trace analysis and SEM images of the surface. Prismatic slip deformation was the dominant slip mode observed for all the experiments in both plates, which was supported by a critical resolved shear stress (CRSS) ratio analysis. However, due to the texture of plate 1, which strongly favored the activation of prismatic slip, the percentages of prismatic slip activity for specimens from plate 1 tested at 296 K and 728 K (23 °C and 455 °C) were higher than the specimens from plate 2 under the same testing conditions. T1 twinning was an active deformation mode at both 296 K and 728 K (23 °C and 455 °C), but the extent of twinning activity decreased with increased temperature. T1 twinning was more frequently observed in specimens from plate 2, which exhibited a higher fraction of twinning systems favoring activation at both 296 K and 728 K (23 °C and 455 °C). The tension-creep experiment revealed less slip and more grain boundary sliding than in the higher strain rate tensile experiments. Using a previously demonstrated bootstrapping statistical analysis methodology, the relative CRSS ratios of prismatic, pyramidal 〈a〉, pyramidal 〈c+a〉, and T1 twinning deformation systems compared with basal slip were calculated and discussed in light of similar measurements made on CP Ti and Ti-5Al-2.5Sn (wt pct).  相似文献   

15.
16.
17.
The isothermal section of the Ce-Mg-Mn phase diagram at 723 K (450 °C) was established experimentally by means of diffusion couples and key alloys. The phase relationships in the complete composition range were determined based on six solid–solid diffusion couples and twelve annealed key alloys. No ternary compounds were found in the Ce-Mg-Mn system at 723 K (450 °C). X-ray diffraction and energy-dispersive X-ray spectroscopy spot analyses were used for phase identification. EDS line-scans, across the diffusion layers, were performed to determine the binary and ternary homogeneity ranges. Mn was observed in the diffusion couples and key alloys microstructures as either a solute element in the Ce-Mg compounds or as a pure element, because it has no tendency to form intermetallic compounds with either Ce or Mg. The fast at. interdiffusion of Ce and Mg produces several binary compounds (Ce x Mg y ) during the diffusion process. Thus, the diffusion layers formed in the ternary diffusion couples were similar to those in the Ce-Mg binary diffusion couples, except that the ternary diffusion couples contain layers of Ce-Mg compounds that dissolve certain amount of Mn. Also, the ternary diffusion couples showed layers containing islands of pure Mn distributed in most diffusion zones. As a result, the phase boundary lines were pointing toward Mn-rich corner, which supports the tendency of Mn to be in equilibrium with all the phases in the system.  相似文献   

18.
In this study, isothermal reaction behavior of loose NiO powder in a flowing undiluted CH4 atmosphere at the temperature range 1000 K to 1300 K (727 °C to 1027 °C) is investigated. Thermodynamic analyses at this temperature range revealed that single phase Ni forms at the input \( {{n_{{{\text{CH}}_{ 4} }}^{\text{o}} } \mathord{\left/ {\vphantom {{n_{{{\text{CH}}_{ 4} }}^{\text{o}} } {\left( {n_{{{\text{CH}}_{ 4} }}^{\text{o}} + n_{\text{NiO}}^{\text{o}} } \right)}}} \right. \kern-0pt} {\left( {n_{{{\text{CH}}_{ 4} }}^{\text{o}} + n_{\text{NiO}}^{\text{o}} } \right)}} \) mole fractions (\( X_{{{\text{CH}}_{ 4} }} \)) between ~0.2 and 0.5. It was also predicted that free C co-exists with Ni at \( X_{{{\text{CH}}_{ 4} }} \) values higher than ~0.5. The experiments were carried out as a function of temperature, time, and CH4 flow rate. Mass measurement, XRD and SEM-EDX were used to characterize the products at various stages of the reaction. At 1200 K and 1300 K (927 °C and 1027 °C), the reaction of NiO with undiluted CH4 essentially consisted of two successive distinct stages: NiO reduction and pyrolytic C deposition on pre-reduced Ni particles. At 1200 K (927 °C), 1100 K (827 °C), and 1000 K (727 °C), complete oxide reduction was observed within ~7.5, ~17.5, and ~45 minutes, respectively. It was suggested that NiO was essentially reduced to Ni by a CH4 decomposition product, H2. Possible reactions leading to NiO reduction were suggested. An attempt was made to describe the NiO reduction kinetics using nucleation-growth and geometrical contraction models. It was observed that the extent of NiO reduction and free C deposition increased with the square root of CH4 flow rate as predicted by a mass transport theory. A mixed controlling mechanism, partly chemical kinetics and partly external gaseous mass transfer, was responsible for the overall reaction rate. The present study demonstrated that the extent of the reduction can be determined quantitatively using the XRD patterns and also using a formula theoretically derived from the basic XRD data.  相似文献   

19.
Metallurgical and Materials Transactions A - Phase equilibrium relations of the Ho-Ti-Si ternary system at 973 K (700 °C) were experimentally researched by means of X-ray diffraction...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号