首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermodynamic properties of chromium have been determined in the Ni-Cr and Fe-Cr binary systems and in the Fe-corner of the Fe-Ni-Cr system. These properties are based on experimental measurements using solid oxide electrolyte cells of the type: Cr, Cr2O3 I ThO2-Y2O3Cr (alloy), Cr2O3. In the Ni-Cr system, between 900 and 1300°, the activity of chromium exhibits negative deviation from ideality up to about 25 at. pct chromium. For alloys higher in chromium content, the activity of chromium exhibits positive deviation from ideality. In the Fe-Cr system, between 900 and 1200°, and 0 and 63 at. pct Cr, the chromium activity when referred to solid pure chromium exhibits positive deviation from ideality in both the γ and α phases, approaching ideality with increasing temperature. The nickel and iron activities in these two respective binary systems were calculated by a Gibbs-Duhem integration. The activity of chromium, referred to solid pure chromium, was measured between 900 and 1200° in solid Fe-Ni-Cr alloys with chromium concentrations of 9, 20, and 30 at. pct and Ni concentrations of 8, 18, and 30 at. pct. Additions of nickel to Fe-Cr alloys in the above concentration range are found to increase the chromium activity. The effect of nickel in increasing the chromium activity is greater at both greater chromium contents and lower temperatures. Formerly Graduate Student at The University of Michigan, is Staff Associate, Gulf Energy and Environmental Systems, LaJolla, California. This paper is based on a portion of a thesis submitted by F. N. MAZANDARANY in partial fulfillment of the requirements for the degree Doctor of Philosophy at The University of Michigan.  相似文献   

2.
The solubility of Cr(III) species originating from dissolution of Cr2O3 in cryolite-based melts was studied in the temperature range 1173 K to 1293 K (900 °C to 1020 °C). The molar ratio n(NaF)/n(AlF3) was in the range of 1.4 to 2.6. It was found that the solubility depends markedly on the molar ratio n(NaF)/n(AlF3), high ratios resulting in higher solubility. A semi-empirical model describing the solubility of Cr2O3 was developed. The standard deviation between calculated and experimental data is 10 pm (ca 2.4 pct).  相似文献   

3.
Thermodynamics of inclusion formation in Fe-Cr-Ti-N alloys   总被引:7,自引:0,他引:7  
The thermodynamics of titanium in Fe-Cr alloys and of inclusion formation in Fe-Cr-N-Ti alloys was investigated. A metal-nitride-gas equilibration technique was used to measure the activity of titanium. The equilibrium titanium content of the metal that is in equilibrium with pure solid titanium nitride and nitrogen gas at 1 atm was determined. The activity coefficients of titanium it(fTi) relative to 1 wt pct standard state in Fe were calculated for Fe-Cr alloys from the experimental results. The first-order interaction coefficient between titanium and chromium, e Ti Cr , was determined to be 0.024 at 1873 K. The solubility of nitrogen in Fe-Cr alloys was measured and was found to increase with chromium content, which is in agreement with previous work. Thermodynamic calculations were made in order to predict under what conditions titanium nitride will form in 409 stainless steel and was compared with inclusions found in plant samples. The inclusion stability diagrams for 304 stainless steel and Fe-18 pct Cr and Fe-9 pct Cr alloys were computed.  相似文献   

4.
A series of Fe-Cr and Ni-Cr solid solution alloys was reacted at 850 and 950 °C in CO/CO2 gas mixtures in which FeO and NiO were unstable. The compctitive tendencies toward the carburization and oxidation of the chromium solute, as compared to a graphical thermodynamic "metastability" criterion, were tested experimentally. Relatively good agreement was found between predictions and experiments for the occurrence of Cr carburization beneath Cr2O3 internal oxides or external scales. The chromium contents required for the transition from internal oxidation of Cr to the formation of Cr2O3 external scales in CO/CO2 gas mixtures were established for Fe-Cr and Ni-Cr alloys. The Cr2O3 external scales formed on Fe-Cr alloys were found to be relatively impervious to carbon penetration for short (12-hour) experiments. No carburization was observed in the Ni-Cr alloys, but the only alloys that were predicted to carburize were the ones that formed external scales. Formerly Graduate Student, The Ohio State University  相似文献   

5.
To compensate the negative effect caused by the absorption of chromium oxide inclusions during the casting process of Cr-contained steels, a new mold flux system has been designed and investigated. The melting temperature range of the newly designed mold flux system is from [1124 K to 1395 K (851 °C to 1122 °C)]. The viscosity at 1573 K (1300 °C) and the break temperature increase with the addition of MnO and Cr2O3 but decrease with the addition of B2O3. The crystalline fraction of mold flux decreases from 81 to 42.1 pct with the addition of MnO and Cr2O3, and then further decreases to 25.3 pct with the addition of B2O3; however, it improves from 54.4 to 81.5 pct when the basicity increases. Besides, the heat-transfer ability of mold flux is inverse to the crystallization ratio of the slag. The comprehensive study of the properties for the four designed mold fluxes suggests that the mold flux with 1.15 basicity-3.01 pct B2O3-1.10 pct MnO-2.10 pct Cr2O3 shows the best properties for the continuous casting of Cr-contained steels.  相似文献   

6.
In the current investigation, nanocrystalline multicomponent high-entropy alloys (HEAs) have been synthesized in the Cu x Zn y Ti20Fe20Cr20 system (x/y = 1/0, 3/1, 1; and x + y = 40) by mechanical alloying and subsequently consolidated using spark plasma sintering (SPS) in argon atmosphere at a pressure of 50 MPa. A detailed X-ray diffraction and transmission electron microscopy study reveals the presence of both FCC copper solid-solution, (Cu)ss and BCC chromium solid-solution, (Cr)ss phases in both the mechanically alloyed powders as well as the sintered compacts. The phase formation and stability of the sintered multicomponent Cu x Zn y Ti20Fe20Cr20 with x/y = 3/1 and x + y = 40 pellet have been studied at different sintering temperatures, i.e., 873 K, 973 K, 1073 K, and 1173 K (600 °C, 700 °C, 800 °C, and 900 °C). The important findings include that high Vickers bulk hardness of around 6 GPa and relative density of around 95 pct reported in the Cu x Zn y Ti20Fe20Cr20 with x/y = 3/1 and x + y = 40 HEAs, SPSed at 1173 K (900 °C). The formation, consolidation, and microstructural details are analyzed critically and discussed.  相似文献   

7.
Martensite reversion treatment was utilized to obtain ultrafine grain size in Fe-18Cr-12Mn-N stainless steels containing 0 to 0.44 wt pct N. This was achieved by cold rolling to 80 pct reduction followed by reversion annealing at temperatures between 973 K and 1173 K (700 °C and 900 °C) for 1 to 10seconds. The microstructural evolution was characterized using both transmission and scanning electron microscopes, and mechanical properties were evaluated using hardness and tensile tests. The steel without nitrogen had a duplex ferritic-austenitic structure and the grain size refinement remained inefficient. The finest austenitic microstructure was achieved in the steels with 0.25 and 0.36 wt pct N following annealing at 1173 K (900 °C) for 100 seconds, resulting in average grain sizes of about 0.240 ± 0.117 and 0.217 ± 0.73 µm, respectively. Nano-size Cr2N precipitates observed in the microstructure were responsible for retarding the grain growth. The reversion mechanism was found to be diffusion controlled in the N-free steel and shear controlled in the N-containing steels. Due to a low fraction of strain-induced martensite in cold rolled condition, the 0.44 wt pct N steel displayed relatively non-uniform, micron-scale grain structure after the same reversion treatment, but it still exhibited superior mechanical properties with a yield strength of 1324 MPa, tensile strength of 1467 MPa, and total elongation of 17 pct. While the high yield strength can be attributed to strengthening by nitrogen alloying, dislocation hardening, and slight grain refinement, the moderate strain-induced martensitic transformation taking place during tensile straining was responsible for enhancement in tensile strength and elongation.  相似文献   

8.
The objective of this study was to determine the mechanisms of carburization and decarburization of alloy 617 in impure helium. To avoid the coupling of multiple gas/metal reactions that occurs in impure helium, oxidation studies were conducted in binary He + CO + CO2 gas mixtures with CO/CO2 ratios of 9 and 1272 in the temperature range 1123 K to 1273 K (850 °C to 1000 °C). The mechanisms were corroborated through measurements of oxidation kinetics, gas-phase analysis, and surface/bulk microstructure examination. A critical temperature corresponding to the equilibrium of the reaction 27Cr + 6CO ↔ 2Cr2O3 + Cr23C6 was identified to lie between 1173 K and 1223 K (900 °C and 950 °C) at CO/CO2 ratio 9, above which decarburization of the alloy occurred via a kinetic competition between two simultaneous surface reactions: chromia formation and chromia reduction. The reduction rate exceeded the formation rate, preventing the growth of a stable chromia film until carbon in the sample was depleted. Surface and bulk carburization of the samples occurred for a CO/CO2 ratio of 1272 at all temperatures. The surface carbide, Cr7C3, was metastable and nucleated due to preferential adsorption of carbon on the chromia surface. The Cr7C3 precipitates grew at the gas/scale interface via outward diffusion of Cr cations through the chromia scale until the activity of Cr at the reaction site fell below a critical value. The decrease in activity of chromium triggered a reaction between chromia and carbide: Cr2O3 + Cr7C3 → 9Cr+3CO, which resulted in a porous surface scale. The results show that the industrial application of the alloy 617 at T > 1173 K (900 °C) in impure helium will be limited by oxidation.  相似文献   

9.
The surface tension of liquid Fe-Cr-O alloys has been determined by using the sessile drop method at 1823 K. It was found that the surface tension of liquid Fe-Cr-O alloy markedly decreases with oxygen content at constant chromium content, and the surface tension at a given oxygen content remains almost constant, regardless of the chromium content. When the surface tension of liquid Fe-Cr-O alloys is plotted as a function of oxygen activity, with an increase in the chromium content, the surface tension shows a much steeper decrease with respect to oxygen activity. The surface tension of liquid Fe-Cr-O alloys at 1823 K is given as follows: σ=1842-279 ln (1+K O a O). Here, assuming a Langmuir-type adsorption isotherm, the adsorption coefficient of oxygen, K O(Fe-Cr), as a function of chromium content, was shown to be K O=140+4.2 × [wt pct Cr]+1.14 × [wt pct Cr]2.  相似文献   

10.
The high-velocity oxy-fuel (HVOF) spray technique was used to deposit Ni-20Cr coating on a commonly used boiler steel ASTM A213 347H. The specimens with and without coating were exposed to the super heater zone of a thermal power plant boiler at a temperature of 973 K (700 °C) under cyclic conditions to ascertain their erosion-corrosion (E-C) behavior. High-temperature oxidation behavior of the specimens was also evaluated under cyclic thermal loading conditions at an elevated temperature of 1173 K (900 °C). Mass change data and thickness loss were measured to formulate the kinetics of E-C/oxidation for the specimens. The exposed specimens were characterized by X-ray diffraction (XRD) and field emission–scanning electron microscopy/energy dispersive spectroscopy (FE-SEM/EDS). The uncoated steel suffered higher E-C in comparison with its coated counterpart in terms of mass loss as well as thickness loss. It was observed that overall mass loss was reduced by 31 pct and thickness loss by 44 pct after the application of the coating. The possible formation of Cr2O3 phase in the coated substrate may be suggested to contribute to better E-C behavior. During air oxidation exposures, the coating was found to be intact with only marginal spallation of its oxide scales, which is an indicator of good adhesion between the coating and substrate steel. The air oxidation mass change data indicated that the coating enhanced the oxidation resistance of the steel by 85 pct.  相似文献   

11.
A family of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys is under development for structural use in fossil energy conversion and combustion system applications. The AFA alloys developed to date exhibit comparable creep-rupture lives to state-of-the-art advanced austenitic alloys, and superior oxidation resistance in the ~923 K to 1173 K (650 °C to 900 °C) temperature range due to the formation of a protective Al2O3 scale rather than the Cr2O3 scales that form on conventional stainless steel alloys. This article overviews the alloy design approaches used to obtain high-temperature creep strength in AFA alloys via considerations of phase equilibrium from thermodynamic calculations as well as microstructure characterization. Strengthening precipitates under evaluation include MC-type carbides or intermetallic phases such as NiAl-B2, Fe2(Mo,Nb)-Laves, Ni3Al-L12, etc. in the austenitic single-phase matrix. Creep, tensile, and oxidation properties of the AFA alloys are discussed relative to compositional and microstructural factors.  相似文献   

12.
In order to obtain the activities of chromium in molten copper at dilute concentrations (<0.008 chromium mole fractions), liquid copper was brought to equilibrium with molten CaCl2 + Cr2O3 slag saturated with Cr2O3 (s), at temperatures between 1423 and 1573 K, and the equilibrium oxygen partial pressures were measured by means of solid-oxide galvanic cells of the type Mo/Mo + MoO2/ZrO2(MgO)/(Cu + Cr))alloy + Cr2O3 + (CaCl2 + Cr2O3)slag/Mo. The free energy changes for the dissolution of solid chromium in molten copper at infinite dilution referred to 1 wt pct were determined as Cr (s) = Cr(1 wt pct, in Cu) and ΔG° = + 97,000 + 73.3(T/K) ± 2,000 J mol−1.  相似文献   

13.
Equilibrium relations involving alloy and oxide phases in the system Fe-Cr-O were determined in the temperature range from 1600 °C to 1825 °C (1873 to 2087 K). Compositions of coexisting alloy and spinel phases were established as a function of oxygen pressure by equilibrating liquid Fe-Cr alloys with iron chromite (Fe3-xCrxO4) solid solutions at 1600 °C and 1700 °C. Combinations of these experimental data and thermodynamic calculations were used to construct composition-oxygen pressure diagrams for the system at 1600 °C and 1700 °C. Additional runs for selected mixtures were made at still higher temperatures (1700 °C to 1825 °C), and thermodynamic parameters were derived for spinel-containing phase assemblages at temperatures up to 1865 °C. The spinel phases occurring in the present system are typically in the high-chromium range of the solid-solution series Fe3O4-Cr3O4,i.e., in the range between stoichiometric iron chromite (FeCr2O4) and Cr3O4. The activities of the various oxide components of the spinel solid solution at 1600 °C were calculated from experimentally determined parameters for coexisting alloy and spinel phases, as well as by statistical-mechanical modeling of the same spinel solid solution based on crystal-chemical considerations. The agreement between the two sets of results was excellent. Temperature variation of parameters characterizing the univariant equilibria spinel + Cr2O3 + alloy and spinel + alloy + liquid oxide was established. The univariant curves were found to display temperature maxima of 1715 °C ± 5 °C and approximately 1865 °C, respectively. In analogy with relations in the Cr-O system, the increase in divalent chromium of the liquid oxide phase with decreasing oxygen potential was identified as the main cause of the sharp decrease in liquidus temperatures of chromites in contact with Fe-Cr alloys of high Cr contents. Formerly Graduate Research Assistant, Department of Metallurgy, The Pennsylvania State University L.S. DARKEN and ARNULF MUAN, formerly Professors of Geochemistry and Materials Science, The Pennsylvania State University, University Park, PA 16802, are deceased.  相似文献   

14.
In this work, the Fe-Cr-C-N alloys were synthesized by nitriding the Fe, Cr, and C powder mixtures at 1573 K in the N2 gas (101 325 Pa). The nitrogen content and phase relationships at 1173 K in the alloys were investigated by the use of an equilibration technique. The thermodynamic activities of chromium in the alloys were studied using the solid-state galvanic cell method with CaF2 as the solid electrolyte in the temperature range 973 to 1173 K in an atmosphere of N2 gas (101 325 Pa). The activities of chromium in the Fe-Cr-C-N alloys were calculated and compared with those of the corresponding Fe-Cr-C ternary alloys with pure bcc-Cr as standard state. X-ray diffraction (XRD) and scanning electron microscopy (SEM) methods were used to identify the equilibrium phases and microstructures of the investigated alloys. The experimental results show that a Cr2N-based nitride was formed during the nitriding procedure in the alloys. The nitrogen content in the alloys decreases with the decreasing chromium content, as well as the increasing temperature. The addition of nitrogen to the ternary Fe-Cr-C alloy was found to have a strong negative impact on the Cr activity in the Fe-Cr-C-N system.  相似文献   

15.
In the present study, the diffusion bonding of 17-4 precipitation hardening stainless steel to Ti alloy with and without nickel alloy as intermediate material was carried out in the temperature range of 1073 K to 1223 K (800 °C to 950 °C) in steps of 298 K (25 °C) for 60 minutes in vacuum. The effects of bonding temperature on interfaces microstructures of bonded joint were analyzed by light optical and scanning electron microscopy. In the case of directly bonded stainless steel and titanium alloy, the layerwise α-Fe + χ, χ, FeTi + λ, FeTi + β-Ti phase, and phase mixture were observed at the bond interface. However, when nickel alloy was used as an interlayer, the interfaces indicate that Ni3Ti, NiTi, and NiTi2 are formed at the nickel alloy-titanium alloy interface and the PHSS-nickel alloy interface is free from intermetallics up to 1148 K (875 °C) and above this temperature, intermetallics were formed. The irregular-shaped particles of Fe5Cr35Ni40Ti15 have been observed within the Ni3Ti intermetallic layer. The joint tensile and shear strength were measured; a maximum tensile strength of ~477 MPa and shear strength of ~356.9 MPa along with ~4.2 pct elongation were obtained for the direct bonded joint when processed at 1173 K (900 °C). However, when nickel base alloy was used as an interlayer in the same materials at the bonding temperature of 1148 K (875 °C), the bond tensile and shear strengths increase to ~523.6 and ~389.6 MPa, respectively, along with 6.2 pct elongation.  相似文献   

16.

The hot deformation behavior of 2101 grade lean duplex stainless steel (DSS, containing ~5 wt pct Mn, ~0.2 wt pct N, and ~1.4 wt pct Ni) and associated microstructural changes within δ-ferrite and austenite (γ) phases were investigated by hot-compression testing in a GLEEBLE 3500 simulator over a range of deformation temperatures, T def [1073 K to 1373 K (800 °C to 1100 °C)], and applied strains, ε (0.25 to 0.80), at a constant true strain rate of 1/s. The microstructural softening inside γ was dictated by discontinuous dynamic recrystallization (DDRX) at a higher T def [1273 K to 1373 K (1000 °C to 1100 °C)], while the same was dictated by continuous dynamic recrystallization (CDRX) at a lower T def (1173 K (900 °C)]. Dynamic recovery (DRV) and CDRX dominated the softening inside δ-ferrite at T def ≥ 1173 K (900 °C). The dynamic recrystallization (DRX) inside δ and γ could not take place upon deformation at 1073 K (800 °C). The average flow stress level increased 2 to 3 times as the T def dropped from 1273 to 1173 K (1000 °C to 900 °C) and finally to 1073 K (800 °C). The average microhardness values taken from δ-ferrite and γ regions of the deformed samples showed a different trend. At T def of 1373 K (1100 °C), microhardness decreased with the increase in strain, while at T def of 1173 K (900 °C), microhardness increased with the increase in strain. The microstructural changes and hardness variation within individual phases of hot-deformed samples are explained in view of the chemical composition of the steel and deformation parameters (T def and ε).

  相似文献   

17.
This work is focused on the possibilities of preparing Ni-Ti46 wt pct alloy by powder metallurgy methods. The self-propagating high-temperature synthesis (SHS) and combination of SHS reaction, milling, and spark plasma sintering consolidation (SPS) are explored. The aim of this work is the development of preparation method with the lowest amount of undesirable phases (mainly Ti2Ni phase). The SHS with high heating rate (approx. 200 and 300 K min?1) was applied. Because the SHS product is very porous, it was milled in vibratory disk milling and consolidated by SPS technique at temperatures of 1173 K, 1273 K, and 1373 K (900 °C, 1000 °C, and 1100 °C). The microstructures of samples prepared by SHS reaction and combination of SHS reaction, milling, and SPS consolidation are compared. The changes in microstructure with increasing temperature of SPS consolidation are observed. Mechanical properties are tested by hardness measurement. The way to reduce the amount of Ti2Ni phase in structure is leaching of powder in 35 pct hydrochloric acid before SPS consolidation.  相似文献   

18.
In the present work, the Cr-Fe-N alloys with different compositions were synthesized by nitriding the Cr-Fe powder mixtures in the purified nitrogen gas (101,325 Pa) at 1473 K for 2 weeks. The phase relationships in the synthesized alloys and the alloys equilibrated at 1173 K were carried out by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The nitrogen content in the alloys equilibrated in the nitrogen gas (101,325 Pa) at 1173 K was analyzed using the inert-gas fusion thermal conductivity (IGFTC) method. The thermodynamic activities of Cr in Fe-Cr-N alloys were measured in the temperature range 973 to 1123 K using the solid-state galvanic cell technique with CaF2 single crystal as the solid electrolyte. Based on the measured EMF values, the chromium activities in the alloys were calculated with respect to pure Cr with bcc structure as the standard state. The effect of nitrogen on Cr activities in the Cr-Fe-N system was examined by comparing the experimental results of the Cr activities in the Cr-Fe and Cr-Fe-C systems.  相似文献   

19.
Ni-based alloys with high Cr contents are not only known for their excellent high temperature and hot corrosion resistance, but are also known for poor mechanical properties and difficult workability. Powder metallurgical (PM) manufacturing of alloys may overcome several of the shortcomings encountered in materials manufacturing involving solidification. In the present work, six PM Ni-based alloys containing 35 to 45 wt pct Cr and 3.5 to 6 wt pct Nb were produced and compacted via hot isostatic pressing. Samples were heat treated for up to 1656 hours at either 923 K or 973 K (650 °C or 700 °C), and the microstructures and mechanical properties were quantified and compared to thermodynamic calculations. For the majority of the investigated alloys, the high Cr and Nb contents caused development of primary populations of globular α-Cr and δ (Ni3Nb). Transmission electron microscopy of selected alloys confirmed the additional presence of metastable γ″ (Ni3Nb). A co-dependent growth morphology was found, where the preferred growth direction of γ″, the {001} planes of γ-Ni, caused precipitates of both α-Cr and δ to appear in the form of mutually perpendicular oriented disks or plates. Solution heat treatment at 1373 K (1100 °C) followed by aging at 973 K (700 °C) produced a significant strength increase for all alloys, and an aged yield strength of 990 MPa combined with an elongation of 21 pct is documented for Ni 40 wt pct Cr 3.5 wt pct Nb.  相似文献   

20.
18Mn18Cr0.6N steel specimens were tensile tested between 1173 K and 1473 K (900 °C and 1200 °C) at 9 strain rates ranging from 0.001 to 10 s?1. The tensile strained microstructures were analyzed through electron backscatter diffraction analysis. The strain rate was found to affect hot ductility by influencing the strain distribution, the extent of dynamic recrystallization and the resulting grain size, and dynamic recovery. The crack nucleation sites were primarily located at grain boundaries and were not influenced by the strain rate. At 1473 K (1200 °C), a higher strain rate was beneficial for grain refinement and preventing hot cracking; however, dynamic recovery appreciably occurred at 0.001 s?1 and induced transgranular crack propagation. At 1373 K (1100 °C), a high extent of dynamic recrystallization and fine new grains at medium strain rates led to good hot ductility. The strain gradient from the interior of the grain to the grain boundary increased with decreasing strain rate at 1173 K and 1273 K (900 °C and 1000 °C), which promoted hot cracking. Grain boundary sliding accompanied grain rotation and did not contribute to hot cracking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号