首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presented method provides an easy processing route to synthesize Fe3O4/Ag core–shell composite nanoparticles. Their structures were characterized by x-ray diffraction and transmission electron microscopy. The average size of the Fe3O4 core and Ag shell was about 32.0 nm and 5.0 nm (or 28.0 nm), respectively. Furthermore, magnetic measurements showed that the composite nanoparticles exhibited typical superparamagnetic behavior, specific saturation magnetization of ca. 24.0 emu/g, and intrinsic coercivity of 106.0 Oe. At the same time, high conductivity (64.7 S/cm) of the composite nanoparticles was also observed. This method provides an opportunity to synthesize other core–shell (Fe3O4) nanoparticles in a single step.  相似文献   

2.
The development of new nanostructured materials based on YBa2Cu3O7–δ, BiFeO3, and Fe3O4 compounds is considered. The structure, morphology, and properties of these materials are studied. The possibilities of fabricating YBa2Cu3O7–δ ceramics with given densities from nanopowders in a single stage by an energy efficient method and growing superconducting films of the same composition on a silicon substrate (on a SiO2 layer) are demonstrated. The technique for fabricating BiFeO3 nanopowder, making it possible to obtain nanostructured ceramics without additional accompanied phases commonly forming during BiFeO3 synthesis is developed. Two methods of the single-stage synthesis of Fe3O4 nanopowder are presented: burning of nitrate-organic precursors and the electrochemical three-electrode method in which one of the electrodes, i.e., an anode containing scrap iron and slurry, is used as an expendable material.  相似文献   

3.
4.
The effect of annealing in argon at temperatures of Tan = 700–900°C on the IV characteristics of metal–Ga2O3–GaAs structures is investigated. Samples are prepared by the thermal deposition of Ga2O3 powder onto GaAs wafers with a donor concentration of N d = 2 × 1016 cm–3. To measure theIV characteristics, V/Ni metal electrodes are deposited: the upper electrode (gate) is formed on the Ga2O3 film through masks with an area of S k = 1.04 × 10–2 cm2 and the lower electrode in the form of a continuous metallic film is deposited onto GaAs. After annealing in argon at Tan ≥ 700°C, the Ga2O3-n-GaAs structures acquire the properties of isotype n-heterojunctions. It is demonstrated that the conductivity of the structures at positive gate potentials is determined by the thermionic emission from GaAs to Ga2O3. Under negative biases, current growth with an increase in the voltage and temperature is caused by field-assisted thermal emission in gallium arsenide. In the range of high electric fields, electron phonon-assisted tunneling through the top of the potential barrier is dominant. High-temperature annealing does not change the electron density in the oxide film, but affects the energy density of surface states at the GaAs–Ga2O3 interface.  相似文献   

5.
(1 ? x)BaTiO3xBi(Cu0.75W0.25)O3 [(1 ? x)BT–xBCW, 0 ≤ x ≤ 0.04] perovskite solid solutions ceramics of an X8R-type multilayer ceramic capacitor with a low sintering temperature (900°C) were synthesized by a conventional solid state reaction technique. Raman spectra and x-ray diffraction analysis demonstrated that a systematically structural evolution from a tetragonal phase to a pseudo-cubic phase appeared near 0.03 < x < 0.04. X-ray photoelectron analysis confirmed the existence of Cu+/Cu2+ mixed-valent structure in 0.96BT–0.04BCW ceramics. 0.96BT–0.04BCW ceramics sintered at 900°C showed excellent temperature stability of permittivity (Δε/ε 25°C ≤ ±15%) and retained good dielectric properties (relative permittivity ~1450 and dielectric loss ≤2%) over a wide temperature range from 25°C to 150°C at 1 MHz. Especially, 0.96BT–0.04BCW dielectrics have good compatibility with silver powders. Dielectric properties and electrode compatibility suggest that the developed materials can be used in low temperature co-fired multilayer capacitor applications.  相似文献   

6.
BiFeO3–ZnFe2O4 heterojunction nanocomposites have been produced by a chemical synthesis method using one- and two-pot approaches. X-ray diffraction patterns of as-calcined samples indicated formation of pure zinc ferrite (ZnFe2O4) and bismuth ferrite (BiFeO3) phases, each retaining its crystal structure. Diffuse reflectance spectrometry was applied to calculate the optical bandgap of the photocatalysts, revealing values in the range from 2.03 eV to 2.17 eV, respectively. The maximum photodegradation of methylene blue of about 97% was achieved using two-pot-synthesized photocatalyst after 120 min of visible-light irradiation due to the higher probability of charge separation of photogenerated electron–hole pairs in the heterojunction structure. Photoluminescence spectra showed lower emission intensity of two-pot-synthesized photocatalyst, due to its lower recombination rate originating from greater charge separation.  相似文献   

7.
β-Zn4Sb3 is one of the most important thermoelectric materials in the intermediate temperature range, but poor mechanical properties limit its commercial application. In this work we adopted a melt-spinning (MS) technique followed by a quick spark plasma sintering (SPS) procedure to fabricate nanostructured β-Zn4Sb3 bulk material with good thermoelectric performance and mechanical properties. The nanostructure had a significant influence on the thermoelectric transport properties and mechanical strength. Compared with the sample prepared by the traditional melting method (M-ingot), the Seebeck coefficient of the MS-SPS samples was significantly higher and the thermal conductivity was remarkably lower. In spite of the lower electrical conductivity, the σ/κ ratio increased in the high temperature range, leading to great improvement in the thermoelectric figure of merit (ZT). The maximum ZT value of 1.16 was obtained at 700 K for the MS-SPS-40 sample. Compared with the M-ingot sample, it was 47% higher at the same temperature. Moreover, the average compressive strength of the MS-SPS-40 sample reached 337.9 MPa, which is 130% higher than that of the M-ingot sample. β-Zn4Sb3 with such high mechanical strength has great potential for commercial application.  相似文献   

8.
We have prepared Ho3+/Mo6+ cosubstituted bismuth titanate [(Bi3.6Ho0.4)3.99- Ti2.985Mo0.015O12, BHTM] thin films on Pt/Ti/SiO2/Si substrates using the sol–gel method. The crystal structure and morphology of the BHTM films were characterized. The BHTM samples show a single phase of Bi-layered Aurivillius structure and a dense microstructure. The dielectric constant and dielectric loss of the BHTM films were about 359 and 0.043, respectively, at a frequency of 1 MHz. The films exhibit 2P r of 57.7 μC/cm2 and 2E c of 290.0 kV/cm at an applied field of 470 kV/cm, and have fatigue-free characteristics. They also showed good insulating behavior according to leakage current testing.  相似文献   

9.
The effect of the content of CuO additive on the sinterability, phase composition, microstructure, and electrical properties of BaCe0.5Zr0.3Y0.2O3–δ proton-conducting material is studied. Ceramic samples were produced by the citrate–nitrate synthesis method with the addition of 0, 0.25, 0.5, and 1% CuO. It is shown that the relative density of the samples containing 0.5 and 1% CuO is higher than 94% at a sintering temperature of 1450°C, whereas the relative density of the material is no higher than 85% at a lower content of the sintering additive. From the data of X-ray diffraction analysis and scanning electron microscopy, it is established that the introduction of a small CuO content (0.25%) is inadequate for single-phase and high-dense ceramics to be formed. The conductivity and scanning electron microscopy data show that the sample with BaCe0.5Zr0.3Y0.2O3–δ + 0.5% CuO composition possesses high total and ionic conductivities as well as a high degree of microstructural stability after hydrogen reduction of the ceramics. The citrate–nitrate method modified by the introduction of a small CuO content can be recommended for the production of single-phase, gas-tight, and high-conductivity electrolytes based on both BaCeO3 and BaZrO3.  相似文献   

10.
Free-standing, very thin, single-crystal β-gallium oxide (β-Ga2O3) diaphragms have been constructed and their dynamical mechanical properties characterized by noncontact, noninvasive optical measurements harnessing the multimode nanomechanical resonances of these suspended nanostructures. We synthesized single-crystal β-Ga2O3 using low-pressure chemical vapor deposition (LPCVD) on a 3C-SiC epilayer grown on Si substrate at temperature of 950°C for 1.5 h. The synthesized single-crystal nanoflakes had widths of ~ 2 μm to 30 μm and thicknesses of ~ 20 nm to 140 nm, from which we fabricated free-standing circular drumhead β-Ga2O3 diaphragms with thicknesses of ~ 23 nm to 73 nm and diameters of ~ 3.2 μm and ~ 5.2 μm using a dry stamp-transfer technique. Based on measurements of multiple flexural-mode mechanical resonances using ultrasensitive laser interferometric detection and performing thermal annealing at 250°C for 1.5 h, we quantified the effects of annealing and adsorption of atmospheric gas molecules on the resonant characteristics of the diaphragms. Furthermore, we studied the effects of structural nonidealities on these free-standing β-Ga2O3 nanoscale diaphragms. We present extensive characterization of the mechanical and optical properties of free-standing β-Ga2O3 diaphragms, paving the way for realization of resonant transducers using such nanomechanical structures for use in applications including gas sensing and ultraviolet radiation detection.  相似文献   

11.
In this work, a citrate sol–gel method (Sol–Gel) with polyethylene glycol 400 (Sol-Gel-PEG400) was developed to prepare γ-Na x Co2O4 by using sodium and cobalt nitrates as the raw materials, citric acid as a complexing agent, and PEG400 as a dispersant. At 800°C, single-phase γ-Na x Co2O4 crystals were obtained using Sol-Gel-PEG400. With the addition of 1 vol.% PEG400, smaller, flaky particles exhibited a well-tiled structure along the plane direction of the flaky particles. Moreover, polycrystalline sintered bulk γ-Na x Co2O4 with more highly oriented crystals and greater compact density was fabricated using the Sol-Gel-PEG400 synthesized powders compared with the powders synthesized by citrate Sol–Gel. The electrical conductivity (σ) values of Sol-Gel-PEG400 samples were higher than those of Sol–Gel samples between 400 K and 900 K. The σ value of Sol-Gel-PEG400 increased to 3.13 × 104 Sm−1 at 400 K and to 1.84 × 104 Sm−1 at 900 K. Between 400 K and 850 K, the Seebeck coefficient (α) values of Sol-Gel-PEG400 samples were slightly lower than those of Sol–Gel samples. Near 900 K, the α values of these two methods were nearly equal, at 164 μV K−1. Between 400 K and 900 K, the power factor (P) of Sol-Gel-PEG400 was evidently larger than that of Sol–Gel.  相似文献   

12.
A combined study of the spectral photoluminescence distribution and excitation spectra of photoluminescence in La2S3 · 2Ga2O3 and (La0.97Nd0.03)2S3 · 2Ga2O3 glasses, along with the study of the transmission spectra of these glasses, was carried out. The radiative channel was ascertained to be the main channel for the energy transfer from the host matrix to the Nd3+ ions upon excitation of the glasses with light at a wavelength of the fundamental absorption band. Oxygen centers with the level E c -2.0 eV act as sensitizing agents. The structural disordering of the glass host increases the variance in the magnitude of splitting of the multiplet levels from the 4f electronic states of the Nd3+ ion. This promotes nonradiative relaxation of the electrons from excited states to the laser 4F3/2 level. The (La0.97Nd0.03)2S3 · 2Ga2O3 glasses can be considered as promising laser materials for obtaining the stimulated emission of radiation of Nd3+ ions under an optical pump in the range of the fundamental absorption band of the glass.  相似文献   

13.
Terahertz (THz) radiation perception using uncooled detectors are gaining importance due to the increasing demands in the areas of military, space, and industrial, medical, and surveillance applications. In spite of the efforts of researchers to fill the THz gap, there exists a need for detectors in the range between 15 THz and 30 THz. In this paper, we discuss the development of bolometric detectors whose performance is enhanced by an optical immersion technique and their characterization in the aforesaid range of frequencies. These detectors are characterized by high specific detectivity (D*) of 1.28?×?109 cmHz1/2 W?1 and high radiometric resolution (noise-equivalent temperature difference?=?26 mK) and are fast enough for bolometric detectors (time constant?=?1.7 ms), which make them suitable for spectroscopic and imaging applications.  相似文献   

14.
Thin solid layers that are formed upon heating of the gaseous trimethylbismuth–isopropylselenide–hydrogen system on the (0001) Al2O3 and singular and vicinal (100) GaAs surfaces are studied. The conditions for deposition of metal Bi and phases of Bi4Se3, BiSe, and topological insulator Bi2Se3 using the MOCVD method are determined. Pure metastable phase BiSe is obtained for the first time. Bi2Se3 films with a thickness of no less than 200 nm, a relatively low volume concentration of 3 ×1018 cm–3, and a high mobility of carriers at 300 K (1000 cm2 V–1 s–1) are fabricated.  相似文献   

15.
A H-terminated surface conductive layer of B-doped diamond on a (111) surface was used to fabricate a metal–oxide–semiconductor field-effect transistor (MOSFET) using an electron beam evaporated SiO2 or Al2O3 gate insulator and a Cu-metal stacked gate. When the bulk carrier concentration was approximately 1015/cm3 and the B-doped diamond layer was 1.5 μm thick, the surface carrier mobility of the H-terminated surface on the (111) diamond before FET processing was 35 cm2/Vs and the surface carrier concentration was 1.5 × 1013/cm2. For the SiO2 gate (0.76 μm long and 50 μm wide), the maximum measured drain current at a gate voltage of −3.0 V was −75 mA/mm and the maximum transconductance was 24 mS/mm, and for the Al2O3 gate (0.64 μm long and 50 μm wide), these features were −86 mA/mm and 15 mS/mm, respectively. These values are among the highest reported direct-current (DC) characteristics for a diamond homoepitaxial (111) MOSFET.  相似文献   

16.
The evolution of ZnO nanowires has been studied under supersaturation of Zn metal species with and without a ZnO thin-film buffer layer on α-Al2O3 deposited by the pulsed laser ablation technique. The nanowires had diameters in the range of 30 nm to 50 nm and lengths in the range of 5 μm to 10 μm with clear hexagonal shape and [000[`1]] [000\bar{1}] , [10[`1]1] [10\bar{1}1] , and [10[`1]0] [10\bar{1}0] facets. X-ray diffraction (XRD) measurements indicated crystalline properties for the ZnO nanostructures grown on pulsed laser deposition (PLD) ZnO nucleation layers. The optical properties were analyzed by photoluminescence (PL) and cathodoluminescence (CL) measurements. The ZnO nanowires were found to emit strong ultraviolet (UV) light at 386 nm and weak green emission as observed by PL measurements. The stoichiometry of Zn and O was found to be close to 1 by x-ray photoelectron spectroscopy (XPS) measurements. The process-dependent growth properties of ZnO nanostructures can be harnessed for future development of nanoelectronic components including optically pumped lasers, optical modulators, detectors, electron emitters, and gas sensors.  相似文献   

17.
Original superconducting quantum interference devices (SQUIDs) with a working temperature of 77 K based on high-temperature superconducting (HTSC) YBa2Cu3O7–x films can be used for the measurement systems of nondestructive testing using magnetic and eddy-current methods. A dynamic range of 120 dB with respect to the amplitude of the measured signal and a spatial resolution of about 10 µm are reached for the measurement system with the HTSC SQUID in which a receiving loop with a size of 50 µm is placed at a distance of about 0.3 mm from the room-temperature object under study. The sensitivity with respect to magnetic field (4 fT/ \(\sqrt {Hz} \) at a temperature of 77 K) of the HTSC SQUID magnetometer with multilayer superconducting flux transformer is sufficient for applications in biomagnetic measurements in magnetocardiography and magnetoencephalography. HTSC SQUID gradiometers with multilayer superconducting flux transformers exhibit stable operation in magnetically unshielded space at a sensitivity of 15 fT/cm \(\sqrt {Hz} \) with respect to the gradient of magnetic field at 77 K. Such a sensitivity is sufficient for the detection of single magnetic particles with a size of about 10 µm at a distance of about 15 mm.  相似文献   

18.
Polycrystalline samples of In4(Se1−x Te x )3 were synthesized by using a melting–quenching–annealing process. The thermoelectric performance of the samples was evaluated by measuring the transport properties from 290 K to 650 K after sintering using the spark plasma sintering (SPS) technique. The results indicate that Te substitution can effectively reduce the thermal conductivity while maintaining good electrical transport properties. In4Te3 shows the lowest thermal conductivity of all compositions tested.  相似文献   

19.
The growth of single-crystal films of high-temperature superconductors of the NdBa2Cu3O7–x composition with a thickness of 1–1.5 μm on Al2O3 + CeO2 substrates during the laser spraying is investigated. Technological conditions of the epitaxial growth of the films with a temperature of superconducting transition of 95 K and a critical current of more than 106 A/cm2 at the temperature of liquid nitrogen are determined. It is shown that the structure of fabricated NdBa2Cu3O7–x films is more perfect and homogeneous than the structure of YBa2Cu3O7–x films widely used in microwave electronics.  相似文献   

20.
Harvesting energy from waste heat is a promising field of research as there are significant energy recovery opportunities from various waste thermal energy sources. The present study reports pyroelectric energy harvesting using thick film prepared from a (x)BaTiO3–(1 ? x)PbZr0.52Ti0.48O3 (BT–PZT) solid solution. The developed BT–PZT system is engineered to tune the ferro to paraelectric phase transition temperature of it in-between the phase transition temperature of BaTiO3 (393 K) and PbZrTiO3 (573 K) with higher pyroelectric figure-of-merit (FOM). The temperature-dependent dielectric behavior of the material has revealed the ferro- to paraelectric phase transition at 427 K with a maximum dielectric constant of 755. The room-temperature (298 K) pyroelectric coefficient (Pi) of the material was obtained as 738.63 μC/m2K which has yielded a significantly high FOM of 1745.8 J m?3 K?2. The enhancement in pyroelectric property is attributed to the morphotopic phase transition between tetragonal and rhombohedral PZT phases in the BT–PZT system. The developed BT–PZT system is capable of generating a power output of 1.3 mW/m2 near the Curie temperature with a constant rate (0.11 K/s) of heating. A signal conditioning circuit has been developed to rectify the time-varying current and voltage signals obtained from the harvester during heating cycles. The output voltage generated by the pyroelectric harvester has been stored in a capacitor for powering wearable electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号